Mid-term status report on KISSaF:

Al-based situation interpretation for automated driving
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Abstract Enrivonment modeling

KISSaF is a publicly funded project with four
project partners from industry and academia.
The aim of project KISSaF is the development
of a robust scene prediction model for auto-
mated driving. State-of-the-art Deep Learning
methods are used for a complete and reliable
forecasting of the traffic scene with large time
horizons. The underlying environment model-
INg uses a graph-based representation of the
scene. A prototype vehicle has been built-up for
data recording. This data is the central part for
model development, improvement and testing.
A framework is currently setup for a scenario-
based test approach and performance can be
judged under realistic conditions with integrated
maneuver planning.
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Measurement vehicle Sensor input:

* 4 short-range corner radars

» Forward-facing mid-range radar
» Forward-facing camera

» 360° Lidar system

- GPS

* HD-maps

Scene prediction modeling with neural network
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Environment representation:
Environment model is a list of polylines.

Ego vehicle prepresented as a graph

Global object lists created by using high-
level fusion and tracking [1]

Combined with HD-map information

Node connections encode relationships to
predecessor, successor and lane assign-
ments
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 Vectorized environment representation is input to the predictor
* Trajectories and their probabilities are extracted via a Multi Layer Perceptron (MLP)[2, 3]
 Attention weights for the individual nodes are estimated

» Coupled prediction and planning is evaluated

Future steps

» Massive data taking campaigns to guarantee
wide variety of scenarios
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» Evaluation and comparison with reference
models
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n:. number of trajectories

ADE =

Tobs @Nd Tyreq: first and final predicted trajec-
tory points

X! and x/: predicted and real longitudinal co-
ordinates of t's trajectory point for trajectory
]

y! and y!: predicted and real lateral coordi-
nates of t's trajectory point for trajectory i

KPIs for Driving Functions
» Automated braking or acceleration
- Automated lane change

Evaluation in scenarios
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