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Abstract
KISSaF is a publicly funded project with four
project partners from industry and academia.
The aim of project KISSaF is the development
of a robust scene prediction model for auto-
mated driving. State-of-the-art Deep Learning
methods are used for a complete and reliable
forecasting of the traffic scene with large time
horizons. The underlying environment model-
ing uses a graph-based representation of the
scene. A prototype vehicle has been built-up for
data recording. This data is the central part for
model development, improvement and testing.
A framework is currently setup for a scenario-
based test approach and performance can be
judged under realistic conditions with integrated
maneuver planning.

Measurement vehicle

Enrivonment modeling

Sensor input:

• 4 short-range corner radars

• Forward-facing mid-range radar

• Forward-facing camera

• 360◦ Lidar system

• GPS

• HD-maps

Environment representation:
Environment model is a list of polylines.

• Ego vehicle prepresented as a graph

• Global object lists created by using high-
level fusion and tracking [1]

• Combined with HD-map information

• Node connections encode relationships to
predecessor, successor and lane assign-
ments

Scene prediction modeling with neural network
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• Vectorized environment representation is input to the predictor

• Trajectories and their probabilities are extracted via a Multi Layer Perceptron (MLP)[2, 3]

• Attention weights for the individual nodes are estimated

• Coupled prediction and planning is evaluated

Evaluation
Average (and final) displacement error
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• n: number of trajectories

• Tobs and Tpred : first and final predicted trajec-
tory points

• x̂ t
i and x t

i : predicted and real longitudinal co-
ordinates of t ’s trajectory point for trajectory
i

• ŷ t
i and y t

i : predicted and real lateral coordi-
nates of t ’s trajectory point for trajectory i

KPIs for Driving Functions

• Automated braking or acceleration

• Automated lane change

→ Evaluation in scenarios

Future steps

• Massive data taking campaigns to guarantee
wide variety of scenarios

• Meta data labeling for efficient data selection

• Scene prediction modeling on real data

• Evaluation and comparison with reference
models
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