

Mid-term status report on KISSaF: AI-based situation interpretation for automated driving

A. Stockem Novo^{*,1,2}, M. Stolpe¹, C. Diehl³, T. Osterburg³, T. Bertram³, V. Parsi⁴, N. Murzyn⁴, F. Mualla⁴, G. Schneider⁴, P. Töws⁵

¹ZF Automotive Germany GmbH, ²Hochschule Ruhr West, ³RST, TU Dortmund, ⁴ZF Friedrichshafen AG, ⁵ INGgreen GmbH

*anne.stockem-novo@hs-ruhrwest.de

Abstract

KISSaF is a publicly funded project with four project partners from industry and academia. The aim of project KISSaF is the development of a robust scene prediction model for automated driving. State-of-the-art Deep Learning methods are used for a complete and reliable forecasting of the traffic scene with large time horizons. The underlying environment modeling uses a graph-based representation of the scene. A prototype vehicle has been built-up for data recording. This data is the central part for model development, improvement and testing. A framework is currently setup for a scenario-based test approach and performance can be judged under realistic conditions with integrated maneuver planning.

Environment modeling

Measurement vehicle

Sensor input:

- 4 short-range corner radars
- Forward-facing mid-range radar
- Forward-facing camera
- 360° Lidar system
- GPS
- HD-maps

Environment representation:

Environment model is a list of polylines.

- Ego vehicle represented as a graph
- Global object lists created by using high-level fusion and tracking [1]
- Combined with HD-map information
- Node connections encode relationships to predecessor, successor and lane assignments

Scene prediction modeling with neural network

- Vectorized environment representation is input to the predictor
- Trajectories and their probabilities are extracted via a Multi Layer Perceptron (MLP)[2, 3]
- Attention weights for the individual nodes are estimated
- Coupled prediction and planning is evaluated

Evaluation

Average (and final) displacement error

$$ADE = \frac{\sum_{i=1}^n \sum_{t=T_{obs}+1}^{T_{pred}} \sqrt{(\hat{x}_i^t - x_i^t)^2 + (\hat{y}_i^t - y_i^t)^2}}{n (T_{pred} - (T_{obs} + 1))}$$

- n : number of trajectories
- T_{obs} and T_{pred} : first and final predicted trajectory points
- \hat{x}_i^t and x_i^t : predicted and real longitudinal coordinates of t 's trajectory point for trajectory i
- \hat{y}_i^t and y_i^t : predicted and real lateral coordinates of t 's trajectory point for trajectory i

KPIs for Driving Functions

- Automated braking or acceleration
- Automated lane change
- Evaluation in scenarios

Future steps

- Massive data taking campaigns to guarantee wide variety of scenarios
- Meta data labeling for efficient data selection
- Scene prediction modeling on real data
- Evaluation and comparison with reference models

References

- [1] Aeberhard, M. "Object-level fusion for surround environment perception in automated driving applications", *VDI Verlag*, 2017.
- [2] Gao, J. et al. "VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation", *arXiv 2005.04259*, 2020.
- [3] Qi, C. R. et al. "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", *CVPR*, 2017.