
Exploiting Sparse Structures in Nonlinear Model Predictive Control
with Hypergraphs
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Abstract— This paper proposes a hypergraph formulation
for solving MPC problems. The hypergraph approach exploits
the sparse structure in the calculation of derivatives. It is
therefore computationally more efficient in case of multiple-
shooting, collocation and full-discretization methods compared
to a dense formulation. Recent advances in realtime opti-
mization rely on automatic differentiation (AD) to compute
derivatives. An extensive analysis compares MPC variants with
both hypergraph and AD on two benchmark control problems.
Even though AD requires a computational overhead to set up
the problem structure, solving the nonlinear program at each
iteration is fast. The overhead in the hypergraph approach
is negligible, and computational effort in the solving phase is
inferior but comparable to AD. This observation favors the
hypergraph representation for MPC problems with non-static
problem structure.

I. INTRODUCTION
Model predictive control (MPC) constitutes a promising

approach to optimal regulation of nonlinear dynamic systems
w.r.t. general performance criteria under explicit compliance
with state and control input constraints [1]. The practical
application of MPC faces two major challenges: First, it
requires an accurate model of the system dynamics and
second, it demands substantial computational resources in
comparison to conventional control concepts such as PID
or linear quadratic regulators. During the last two decades,
the interest in numerically efficient and computationally fast
implementations of nonlinear MPC has grown significantly
in both theoretical and application-oriented research.

In the context of continuous-time dynamic models, esta-
blished methods solve the underlying OCP either indirectly
or directly. Indirect methods utilize the calculus of variati-
ons, whereas direct methods transform the continuous-time
problem into a nonlinear program with a finite number of op-
timization variables. Direct methods discretize the underlying
boundary value problem, i.e., adherence to the continuous-
time dynamics, and are furthermore divided into either a se-
quential (single-shooting) or simultaneous strategy (multiple-
shooting, collocation). Sequential approaches merely opti-
mize the sequence of controls. Simultaneous strategies also
consider the state trajectories which leads to sparse albeit
larger problem structures and generally improves conver-
gence. In multiple-shooting, the state trajectory is partitioned
into multiple discrete intervals for which isolated initial
value problems are solved [2]. Equality constraints enforcing
continuity among shooting intervals are incorporated in the
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nonlinear program. Collocation methods interpolate the state
and control trajectories (dynamics equation) by finite diffe-
rences or quadrature rules (i.e., implicit numerical integration
resp. spline interpolation). Similiar to multiple-shooting, the
collocation equations are incorporated as additional equality
constraints subject to optimization.

To reduce the computational effort in each sampling
instance, Diehl et al. propose the real-time iteration
(RTI) scheme which merely applies a single warm-started
sequential-quadratic-programming step at each sampling in-
terval [3]. A further application and analysis of RTI for
embedded nonlinear MPC is presented in [4]. Zanelli et al.
modify the RTI scheme to significantly reduce the number
of variables subject to optimization by applying a backward
Riccati sweep to a subset of the horizon [5]. In [6], a
curvature-based measure of nonlinearity is exploited to re-
duce the number of sensitivity computations. Graichen et
al. utilize projected gradients for efficient real-time capable
MPC [7]. [8] proposes an efficient gradient-based method in
which the OCP is transformed to an unconstrained auxiliary
problem with interior penalties. For time-optimal control
tasks, [9] presents a dynamic shooting-grid in which the
number of control inputs becomes as low as the required
number of control interventions.

Exploiting the sparse structure of the underlying OCPs
significantly reduces the computational burden in case of
larger horizon lengths, e.g., Wang et al. suggest to use simul-
taneous methods and to apply warm-starting [10]. Hereby,
the nonlinear program is solved using sparse and early-
terminating interior-point methods. Condensing techniques
also exploit the structure to transform the nonlinear program
into a smaller and dense auxiliary program [11]. Nielsen et
al. focus on the parallelization of the Newton step arising
in both active-set and interior-point solvers by exploiting the
sparse structure of the nonlinear program as well [12].

Most of the above methods have in common that they
compute at least first order and often second order derivatives
of the objective function as well as constraints. If closed
form analytic derivatives are not available, they are computed
automatically in either numeric or symbolic form. The nu-
meric computation relies on finite differences, usually central
differences to achieve the desired precision. On the other
hand, automatic differentiation (AD) recently emerged as a
popular and ubiquitous approach for computing derivatives
symbolically as in the ACADO toolkit [13]. AD inherently
retains the sparse structure of the OCP and hence avoids the
numerical evaluation of structured zero elements in first and
second order derivatives. CasADi [14] constitutes a mature



and efficient open-source AD framework frequently reported
in the MPC literature as the preferred tool in the realm of
optimal control. The symbolic framework of AD enables an
elegant and simple way to formulate the OCP by merely
formulating the mathematical expressions of the nonlinear
program while preserving its sparse structure.

Robotics and computer vision, simultaneous localizing and
mapping as well as bundle adjustment require the solu-
tion of large, structured, albeit unconstrained optimization
problems [15]. These optimization problems are defined in
terms of a graph to restrict computations to only structured
non-zeros. E.g., Kümmerle et al. present an efficient gene-
ral graph optimization framework for unconstrained least-
squares problems [15]. Problems are formulated in terms of
a hypergraph in which edges correspond to cost function
terms. The edges reflect the connectivity of optimization
parameters represented by vertices and hence the hypergraph
preserves the structure of the optimization problem. In [16],
the hypergraph is adopted to an unconstrained trajectory
optimization problem for mobile robots.

Considering the recent advances in numerical optimiza-
tion in MPC, it is worthwhile to investigate and analyze
the hypergraph-based optimization for MPC type constrai-
ned optimal problems, and to contrast its performance and
computational efficiency with established AD frameworks.
This contribution presents the utilization and extension of
hypergraph-based optimization to constrained OCPs in MPC.
A major focus lies in the extensive comparative analysis with
CasADi and conventional dense central differences solutions.

The next section summarizes the nonlinear MPC formula-
tions. Section III introduces a hypergraph formulation for the
specific MPC formulations which is then evaluated in terms
of a systematic comparative analysis in section IV. Finally,
section V discusses and summarizes the results.

II. NONLINEAR MODEL PREDICTIVE CONTROL

This section introduces the fundamentals of direct methods
in MPC that provide the foundation for the hypergraph
formulation in section III.

A. Single-Shooting Approach

Continuous-time dynamics with control input u(t) ∈ Rq

and state x(t) ∈ Rp are defined as ẋ(t) = f
(
x(t),u(t)

)
.

The single-shooting approach discretizes the control input
trajectory along a fixed grid with N partitions: t0 < t1 <
. . . < tk < . . . < tN = tf . Hereby, u(t) := uk for
t ∈ [tk, tk+1) is defined as a piecewise constant trajectory,
also denoted as control input sequence. The state trajectory
emerges as the solution of the initial value problem (IVP)
x(t) =

∫ tf
t0

f
(
x(t),u(t)

)
dt with initial state xs. The single-

shooting OCP is defined as follows:

min
u0,u1,...,uN−1

[
Vf
(
x(tf )

)
+

∫ tf

t0

`
(
x(t),u(t)

)
dt
]

(1)

subject to
x(t0) = xs, x(tk) ∈ X, uk ∈ U, x(tf ) ∈ Xf .

Hereby, x(tk) denotes the state at grid time instance tk
obtained from the IVP. The sets U and X define the feasible
region of controls and states. In order to enforce stability, the
problem formulation includes a terminal state cost Vf : Rp →
R and a terminal set Xf [17]. For sake of readability, the
integral terms of the cost functional and IVP employ the
notation u(t). Obviously, in any implementation, u(t) is
replaced by the sequence of uk for which the set of relevant
subscripts k immediately follows from the integral limits and
the temporal grid.

B. Multiple-Shooting Approach

Direct optimal control with single shooting results in a
compact optimization problem with a discrete set of control
inputs as the only parameters. However, the structure of
NLP (1) is dense since the running cost terms explicitly
depend on the entire sequence uk for k = 0, 1, . . . , N − 1.
The key idea of multiple-shooting is to partition the IVP
on the interval [t0, tf ] into multiple IVPs to be solved in
isolation. Connectivity and compliance among the IVPs is
enforced by additional equality constraints. Similar to single-
shooting, the control input trajectory is discretized along the
fixed grid with N partitions in which tk for k = 0, 1, . . . , N
defines the grid points. In addition, the state trajectory is
discretized either on the same or on a sparser grid with
subscripts i: t0 < t1 < . . . < ti < . . . < tM = tf
with M ≤ N and ti ∈ {tk | k = 0, 1, . . . , N}. The latter
condition enforces that state grid points coincide with control
grid points. States on the state grid are denoted as so-called
shooting nodes si := x(ti) as they constitute the initial states
of the IVP on the interval [ti, ti+1]. The solution of the i-th
IVP is denoted by ϕ

(
u(t), si

)
=
∫ ti+1

ti
f
(
x(t),u(t)

)
with

x(ti) = si associated with the NLP defined by:

min
u0,u1,...,uN−1

s0,s1,...,sM

[
Vf
(
sN
)

+

M−1∑
i=0

∫ ti+1

ti

`
(
x(t),u(t)

)
dt︸ ︷︷ ︸

Vi

(
x(t),u(t)

)
]

(2)

subject to
s0 = xs, si ∈ X, uk ∈ U, sM ∈ Xf ,

si+1 = ϕ
(
u(t), si

)
.

Note, cost term Vi(·) only depends on si and the subset of
uk that fall belong to the shooting interval [ti, ti+1]. The
additional equality constraints enforce connectivity among
two consecutive shooting intervals and depend on the above
subset of parameters as well as si+1. For the sake of
simplicity, state constraints are only evaluated at shooting
nodes si. It is straightforward to enforce them for x(tk),
k = 0, 1, . . . , N as well, by considering intermediate soluti-
ons of the underlying IVP.

The NLP (2) has more parameters but usually converges
faster to the optimal solution [2]. Furthermore, a proper
initial guess of the state trajectory in terms of si significantly
reduces the computation time. This property is exploited in
common warm-start techniques as they utilize the solution
from the previous time step to initialize the parameters of
the current problem [10].



C. Direct Collocation Approach

Direct collocation also discretizes both the state and the
control input trajectory. Instead of solving IVPs over (com-
monly) a piecewise constant control sequence, collocation
methods interpolate the dynamics equation and cost functio-
nal between two consecutive states and controls with predefi-
ned basis functions, e.g., polynomials, usually obtained from
numerical quadrature. The grid t0 < t1 < . . . < tk < . . . <
tN = tf is defined for both states and control inputs such
that xk and uk are the states and controls at grid points tk
respectively. The further analysis relies on Hermite-Simpson
collocation commonly used in practice. Hereby, system dyn-
amics f

(
x(t),u(t)

)
are interpolated on the interval [tk, tk+1]

by Simpson quadrature [18], in particular

φ(xk,xk+1,uk,uk+ 1
2
,uk+1) =

1

6
∆tk · . . .

·
(
f(xk,uk) + 4f(xk+ 1

2
,uk+ 1

2
) + f(xk+1,uk+1)

) (3)

with ∆tk = tk+1 − tk. The midpoint state is defi-
ned as xk+ 1

2
= 0.5(xk + xk+1) + ∆tk

(
f(xk,uk) −

f(xk+1,uk+1)
)
/8. The midpoint control uk+ 1

2
is subject

to optimization. Simpson quadrature interpolates the system
dynamics ẋ(t) = f(·) and control trajectory u(t) via qua-
dratic splines. Consequently, the resulting state trajectory
x(t) is a hermite-cubic spline that complies with the ac-
tual dynamics at grid points tk. Accordingly, the running
cost `

(
x(t),u(t)

)
is also approximated by Simpson qua-

drature: Vk
(
xk,xk+1,uk,uk+ 1

2
,uk+1

)
= ∆tk

(
`(xk,uk) +

4`(xk+ 1
2
,uk+ 1

2
) + `(xk+1,uk+1)

)
/6. The resulting NLP is

defined by:

min
u0,u 1

2
,u1,...,uN

x0,x1,...,xN

[
Vf
(
x(tf )

)
+

N−1∑
k=0

Vk(·)
]

(4)

subject to
x0 = xs, xk ∈ X, uk ∈ U, uk+ 1

2
∈ U xN ∈ Xf ,

xk+1 − xk = φ(xk,xk+1,uk,uk+ 1
2
,uk+1).

Similar to multiple shooting, state constraints are evaluated
at midpoints xk+ 1

2
if necessary.

D. Full Discretization

Direct optimal control via full discretization is a parti-
cular variant of multiple-shooting respectively collocation.
It assumes, that each shooting interval coincides with a
single control action, i.e. M = N which implies i = k,
and ∆tk small, for quadrature a simple one-step scheme
such as forward Euler (as long as the dynamics are not
stiff) is often sufficient. The integral of the running costs is
approximated by Vk

(
x(t),u(t)

)
≈ `(xk,uk)∆tk. Similarly,

a full discretization is achieved via direct collocation, if
system dynamics are approximated by finite differences,
e.g. forward differences, and controls are assumed to be
piecewise constant (midpoints are omitted).

III. HYPER-GRAPH FORMULATION

Solving the NLPs in (1), (2) and (4) requires solvers
that cope with nonlinear cost functions and hard-constraints.

u0 u1 u2 u3 u4 · · · uN−1

Vf

(
x(tf )

)
+
∫ tf
t0

`
(
x(t),u(t)

)
dt; x(tk) ∈ X; x(tf ) ∈ Xf

Fig. 1: Single-shooting hypergraph example

Newton-type methods are well established, in particular
interior-point solvers, sequential quadratic programming ap-
proaches with underlying active-set solvers, or gradient ba-
sed methods such as projected gradients [19]. Numerical
solvers at least calculate first order derivatives. In many
MPC applications with Newton-type methods, Broyden-
Fletcher–Goldfarb-Shanno (BFGS) methods approximate se-
cond order derivatives rather than calculating the Hessian
explicitly. In numerical optimization, derivatives are usually
calculated from finite differences. In particular central dif-
ferences are well established as they balance the trade-off
between accuracy and computational effort. The derivative
of a function ψ(x) is approximated by dψ(x)/dx ≈
0.5h−1

(
ψ(x+h)−ψ(x−h)

)
, e.g., with h = 10−9. Without

prior knowledge of the structure of the NLP, each constraint
and cost term is evaluated twice per parameter to obtain
its first order derivative. Sparsity in the context of MLP
goes both ways, namely that the stage cost terms Vk, Vi and
constraints in the OCP (2) and (4) only depend on a few
parameters xk, uk and vice versa that parameters xk, uk only
contribute to few cost terms. The former property implies
sparse constraint Jacobians and Hessians. The latter sparsity
allows an efficient computation of the cost gradient.

In the following, the OCPs are formulated in terms of
hypergraphs (HG) with the objective to exploit the inherent
sparse problem structure algorithmically. A HG is a graph
G(V, E) composed of a set of vertices V and a set of edges
E . Edges in a HG connect several vertices rather than only
pairs of vertices as conventional graphs. Vertices and edges
are defined for OCPs (1), (2) and (4) as follows:

Vertices: A vertex refers to a vector of optimization
parameters vj ∈ {Rp,Rq}, i.e. either a state or control
input vector. Box constraints on X and U, in particular lower
and upper limits vmin ≤ vj ≤ vmax, are directly cached
in the vertex. The parameters of a so called fixed vertex,
although not subject to optimization, nevertheless appear in
cost and constraint terms. Fixed states replace trivial equality
constraints such as x0 = xs by substitution of x0 by xs.

Edges: An edge refers to a scalar cost term as well as
equality and inequality constraints, figuratively the 3-tupel
(Vl,gl,hl). The idea behind considering a tupel of costs and
constraints is to share common resources which is advanta-
geous for higher order numerical integrators or quadrature.
Note, the evaluation of cost terms might incorporate inter-
mediate solutions of the dynamics IVP or collocation equa-
tion. Shooting and collocation methods impose constraints
on intermediate states respectively controls. Vl : Dl → R,
gl : Dl → Rn and hl : Dl → Rm define the mapping of the
directly dependent parameters Dl = {vj | vj ⊆ V} onto the
cost or constraint terms.



u0 u1 u2 u3 · · · uN−1

s0 s1 · · · sN

V0

(
x(t),u(t)

)
;

s1 = ϕ
(
u(t), s0

) V1

(
x(t),u(t)

)
;

s2 = ϕ
(
u(t), s1

) Vf (sN );
sN ∈ Xf

· · ·

Fig. 2: Multiple-shooting hypergraph with two controls per
shooting interval. A double circle indicates a fixed vertex.

u0 u 1
2

u1 u 3
2

u2 · · · uN−1

x0 x1 x2 · · · xN

V0(·);
x1 − x0 = φ(·)

V1(·);
x2 − x1 = φ(·)

Vf (xN );
xN ∈ Xf

· · ·

Fig. 3: Hermite-Simpson collocation hypergraph example

By definition, scalar costs Vl with l = 0, 1, . . . , L edges
are accumulated in ascending order to sum up the overall
cost, and constraints hl and gl are concatenated to mimic
the complete NLP. To exploit sparsity, the main objective of
transforming OCPs to HGs is to identify the subset of edges
with a minimum or at least small number of dependent ver-
tices Dl. Obviously, single-shooting (1) contains no isolated
summands in its cost function. Hence, the HG is composed
of a single global edge with D0 = {u0,u1, . . . ,uN−1}.
Fig. 1 depicts an example HG. The edge is shown as a
rectangular box with the relevant cost terms and constraints.
For the sake of clarity, the notation complies to (1). A
particular implementation describes the set X and Xf as
equality and inequality constraints, h0 and g0 respectively. In
this example, the vertices include the box constraints on the
controls uk. Obviously, the HG reveals no sparse structure
in case of single-shooting. In contrast, the multiple shooting
OCP (2) is partitioned into a graph with several edges, each
corresponding to a particular shooting interval. The last edge
captures the terminal cost and constraint. Fig. 2 shows an
example HG with two controls per shooting interval. The
subset of vertices for the shooting interval edges is Dl =
{uk,uk+1, sl, sl+1} with k = 2l. Consequently, the number
of structural non-zeros depends on the number of controls in
a shooting interval. In Hermite-Simpson collocation (refer
to Fig. 3) each edge depends on two consecutive states and
three controls.

u0 u1 · · · uN−1

x0 x1 · · · xN

x1 = ϕ
(
u0,x0

)
x2 = ϕ

(
u1,x1

) Vf (xN );
xN ∈ Xf

· · ·

‖u0‖2R̃ ‖u1‖2R̃

‖uN−1‖2R̃

‖∆x1‖2Q̃

Fig. 4: Full discretization hypergraph with quadratic cost

Algorithm 1: Compute derivatives from edge iterations

1: procedure COMPUTEDERIVATIVESEB(V, E ,∇V,Jg,Jh)
2: for all edges l = 0, 1, . . . , L do
3: for each connected unfixed vertex v do
4: Compute gradient of Vl and dense block Jacobians of gl

and hl w.r.t. v
5: Write values to proper positions in ∇V,Jg,Jh

6: return ∇V,Jg,Jh

Algorithm 2: Compute derivatives from vertex iterations
1: procedure COMPUTEDERIVATIVESVB(V, E ,∇V,Jg,Jh)
2: for all unfixed vertices j = 0, 1, . . . , V do
3: for each element e in vertices[j] do
4: e ← e+ h . Central differences forward step
5: Evaluate and cache Vl,gl and hl of connected edges
6: e ← e− 2h . Central differences backward step
7: Evaluate Vl,gl and hl of connected edges
8: Apply central differences formula and write values to

proper positions in ∇V,Jg,Jh

9: e ← e+ h . Revert variable to original value
10: return ∇V,Jg,Jh

The most sparse structure is achieved by full discretization.
Each edge is associated with cost terms that are independent
of intermediate states of the dynamics IVP (see section II-D).
Figure 4 depicts an example with a quadratic cost Vk(·) =
∆xᵀ

kQ̃∆xk + uᵀ
kR̃uk with ∆xk = xk −xref. The two cost

terms for controls and state error are convex with positive
definite weight matrices Q̃ = ∆tkQ and R̃ = ∆tkR.

We introduce two different strategies for computing the
cost gradient and constraint Jacobian (and optionally Hes-
sian) matrices. The discussion focuses on first order deri-
vatives with central differences as they are most relevant
in the context of MPC with BFGS Hessian approximation.
However, the HG formulation extends to finite difference
approximations of higher order. Both strategies include a
preparation phase that sets up the HG structure, establishes
edge connectivity and collects strategy-related information.
Vertices are associated with a unique range of indices that
map to the cost gradient and constraint Jacobian columns.
The Jacobian matrices are represented in sparse matrix
format, e.g., compressed column/row format, or as triplet
list as required for IPOPT (see section IV). Accordingly,
edges are tagged with their equality and inequality Jacobian
row indices. The second phase is the actual solution phase
in which new derivatives are computed at each iteration of
the solution parameters. Algorithm 1 presents the edge-based
variant which facilitates the incorporation of user-defined
block Jacobians directly added to the overall matrix rather
than triggering central differences for computing edge block
Jacobians. On the other hand, the vertex-based strategy in Al-
gorithm 2 requires the vertices to maintain a list of connected
edges. This list is generated within the preparation phase.
The vertex-based strategy facilitates the parallel processing
of connected edges.

IV. COMPARATIVE ANALYSIS AND EVALUATION

The evaluation and comparative performance analysis,
w.r.t. CasADi (v. 3.3.0), is carried out on two common



MPC benchmark problems. Rather than comparing indivi-
dual gradient and Jacobian CPU times, computation times
are compared for overall optimization run (open-loop) for
otherwise identical solver parameters. The analysis takes
into account that CasADi provides exact derivatives, whe-
reas the proposed HG approaches operate wit approximate
derivatives. The OCPs are solved with the established C++
interior-point solver IPOPT [20] and HSL-MA27 as internal
linear solver [21] (Ubuntu, 3.4 GHz Intel i7). Optimizations
terminate upon convergence with a relative tolerance of
10−4. The correct convergence is confirmed by testing the
solutions for equality within the tolerance. CasADi provides
two modes, SX and MX respectively. SX is intended for fast
computation whereas MX focuses on memory efficiency.

Control of the Van-der-Pol oscillator is an established
benchmark problem:

ẋ = f(x, u) = [ẋ, −(x2 − 1)ẋ− x+ u]ᵀ.

from xs = [0, 0]ᵀ to xref = [1, 0]ᵀ while adhering to
|u| ≤ 1 and minimizing a quadratic objective with Q =
diag([1.5, 0.5]) and R = 0.1. The temporal grid is defined
uniformly with ∆t = 0.1. The second benchmark problem
is to balance the cart-pole system:

ẍ =
lmp sin(φ)φ̇2 + u+mpg cos(φ) sin(φ)

mc +mp

(
1− cos2(φ)

) , (5)

φ̈ = − lmp cos(φ) sin(φ)φ̇2 + u cos(φ) + (mc +mp)g sin(φ)

lmc + lmp

(
1− cos2(φ)

)
with a fourth order state space model with states x =
[x, φ, ẋ, φ̇]ᵀ. The task is to upswing the pendulum from
the lower stable equilibrium xs = [0, 0, 0, 0]ᵀ to the upper
equilibrium xref = [−0.5, π, 0, 0]ᵀ and to stabilize it there.
It is Q = diag([2, 10, 0.25, 0.5]), R = 0.1 and ∆t = 0.01.
Dynamic parameters are taken from [18]. For both bench-
marks, the terminal state cost is set to Vf (xN ) = ‖∆x‖2Q
and the terminal constraint is omitted.

The CPU time is partitioned into the preparation time
Tp and the solving time Ts according to section III. For
CasADi, the preparation time includes the complete AD-
graph generation, the solving time involves the numerical
evaluation, in particular the invocation of IPOPT. Table I
shows the mean computation times over 100 repetitions for
both benchmarks with increasing horizon lengths N . The
results indicate that methods which exploit sparsity such
as HG and AD clearly outperform the dense computation
in case of multiple-shooting and collocation. Notice, since
IPOPT is a sparse solver, dense matrix operations automati-
cally imply an additional overhead. For single-shooting, the
HG offers no advantages, as the cost function is monolithic
w.r.t. the parameters (Fig. 1). However, AD already exploits
the structure on the function graph level even for single
shooting. AD is in general slightly faster in terms of the
actual solving time, but requires a substantial and non-
negligible preparation time. This observation favors AD in
case of MPC problems with static structure. The overhead
of setting up the structure is more than compensated by

10−1

100

101

T̄
p

[m
s]

FD HG EB FE MS HG EB FE
FD CasADi SX MS CasADi SX

0 20 40 60 80 100
0

50

100

150

N

T̄
s

[m
s]

Fig. 5: Cart-pole benchmark results of selected approaches

the efficiency of solving the problem of identical structure
repeatedly in MPC closed-loop control.

In numerous MPC applications, the problem structure is
varying, as the number of parameters, the number of cost
terms or their connectivity is adopted during closed-loop
control. MPC with non-static structures accounts for variable
horizon length and dynamic, possibly non-uniform shooting
grid partitions such as time-optimal MPC approaches [9],
[22]. Robot motion planning in dynamic environments is
an example in which cost and constraint terms emerge
and disappear during runtime, as dynamic obstacles enter
the workspace. In these cases, HG is more efficient as
the setup time becomes as or even more relevant than the
computation time itself. Table I indicates, that the relative
advantage of from AD w.r.t. Ts diminishes in case of the
sparse structure of full discretization) compared to medium
sparsity of multiple-shooting. For short horizon lengths N ,
HG sometimes even outperforms AD on the computation
time. Fig. 5 compares the setup and computation times
w.r.t. problem size for HG and AD in case of full discretiza-
tion (FD) and multiple-shooting (HD). Whereas computation
times are similar for low and mid horizon lengths, the setup
time of HG is two orders of magnitude lower.

V. CONCLUSIONS

The benchmarking of computational effort confirms that
sparsity exploitation (HG or AD) in MPC is substantially
more efficient than a dense approach. The comparative
analysis reveals that in general the time to solve the NLP
in the HG formulation is inferior but comparable to AD.
However, the preparation phase of the HG is about two
order of magnitude faster than AD. Consequently, the HG
formulation is therefore preferred for MPC problems which
structure and number of parameters and cost terms varies at
runtime. Both AD and HG facilitate the implementation of
MPC solvers as the programmer merely specifies the cost and
constraint functions1. AD automatically determines the exact
derivatives whereas HG operates with central differences
without noticeable degradation in convergence. Future work
investigates symbolic computations in the HG framework to
support automatic code-generation similar to AD.

1We plan to share the generic HG C++ framework in Q4 2018.



TABLE I: Benchmark results for single-shooting (SS), multiple-shooting with 2 controls per interval (MS), full-discretization
(FD) and Hermite-Simpson collocation (HS); shooting with forward Euler (FE) and 5th-order Runge-Kutta (RK5) integration.

Van-der-Pol Oscillator Cart-Pole System

N = 5 N = 45 N = 85 N = 5 N = 45 N = 85

T̄p [ms] T̄s [ms] T̄p [ms] T̄s [ms] T̄p [ms] T̄s [ms] T̄p [ms] T̄s [ms] T̄p [ms] T̄s [ms] T̄p [ms] T̄s [ms]

SS
FE

Dense – 2.11 – 42.78 – 283.08 – 1.33 – 27.48 – 397.49
HG EB 0.01 2.08 0.02 37.47 0.03 250.37 0.01 1.29 0.02 25.37 0.03 362.54
HG VB 0.01 2.06 0.03 38.33 0.04 258.06 0.01 1.28 0.02 26.48 0.04 378.83
CasADi SX 2.47 2.94 10.70 13.04 19.36 34.21 2.98 3.03 19.76 6.40 37.36 40.66
CasADi MX 4.10 3.25 26.94 22.88 50.71 77.02 6.90 3.66 63.90 15.03 121.90 116.41

SS
R

K
5

Dense – 3.49 – 220.58 – 1561.79 – 2.18 – 140.26 – 2037.26
HG EB 0.01 3.40 0.02 221.03 0.03 1561.86 0.01 2.15 0.02 138.96 0.03 2014.99
HG VB 0.01 3.37 0.02 223.11 0.04 1574.47 0.01 2.13 0.02 140.31 0.03 2036.13
CasADi SX 2.24 2.98 10.03 13.00 17.61 34.19 2.96 2.97 19.25 6.29 35.87 39.62
CasADi MX 4.33 3.22 26.92 23.10 50.45 77.23 7.16 3.70 64.97 15.03 122.33 116.45

M
S

FE

Dense – 2.90 – 127.60 – 615.32 – 2.88 – 278.85 – 2681.32
HG EB 0.02 2.69 0.06 13.55 0.10 29.20 0.01 3.04 0.05 25.22 0.08 123.53
HG VB 0.02 2.76 0.08 14.07 0.14 29.62 0.02 2.58 0.06 25.49 0.10 125.59
CasADi SX 3.05 3.29 14.34 11.74 24.77 14.22 4.36 3.06 29.33 15.14 51.93 50.52
CasADi MX 8.27 4.20 71.27 30.84 145.24 50.25 18.49 4.86 192.44 60.26 407.96 284.00

M
S

R
K

5 Dense – 5.47 – 650.09 – 2506.54 – 7.54 – 1326.15 – 13 810.81
HG EB 0.01 4.21 0.05 53.35 0.08 102.27 0.01 5.19 0.05 106.79 0.08 600.42
HG VB 0.02 4.30 0.06 53.98 0.10 103.34 0.02 5.19 0.06 107.44 0.10 592.04
CasADi SX 2.78 3.20 12.80 11.24 22.76 14.27 4.25 2.97 27.42 15.03 50.64 49.67
CasADi MX 8.42 4.22 71.43 31.07 145.43 50.53 18.77 4.88 193.54 60.29 408.30 284.29

FD

Dense – 2.77 – 106.73 – 489.39 – 3.47 – 402.58 – 5136.10
HG EB 0.02 2.52 0.09 8.58 0.14 11.63 0.02 2.75 0.07 12.30 0.11 46.84
HG VB 0.02 2.51 0.12 8.61 0.17 11.77 0.02 2.74 0.09 12.83 0.16 48.35
CasADi SX 2.91 3.36 12.46 9.98 22.45 15.36 4.06 3.13 25.06 17.05 47.80 60.50
CasADi MX 6.09 3.83 51.53 18.16 112.31 35.47 11.94 3.94 144.46 40.66 345.94 197.04

H
S

Dense – 5.39 – 482.11 – 2294.94 – 7.75 – 1258.13 – 17 234.41
HG EB 0.02 3.78 0.10 25.71 0.16 52.87 0.02 5.06 0.08 49.04 0.14 243.79
HG VB 0.02 3.71 0.12 25.41 0.19 53.31 0.02 4.95 0.10 48.82 0.19 251.76
CasADi SX 4.87 4.74 34.90 17.83 62.74 33.51 9.54 5.88 83.76 29.10 157.89 138.68
CasADi MX 16.71 7.10 186.23 55.72 419.43 130.68 44.28 11.53 626.33 136.18 1526.34 797.26

REFERENCES

[1] M. Morari and J. H. Lee, “Model predictive control: past, present
and future,” Computers & Chemical Engineering, vol. 23, no. 4-5, pp.
667–682, 1999.

[2] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and
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[9] C. Rösmann, A. Makarow, F. Hoffmann, and T. Bertram, “Sparse
shooting at adaptive temporal resolution for time-optimal model pre-
dictive control,” in IEEE Conf. on Decision and Control (CDC), 2017.

[10] Y. Wang and S. P. Boyd, “Fast model predictive control using online
optimization,” in IFAC World Congress, vol. 17, 2008, pp. 6974–6979.

[11] G. Frison, D. Kouzoupis, J. B. Jørgensen, and M. Diehl, “An efficient
implementation of partial condensing for nonlinear model predictive
control,” in IEEE Conference on Decision and Control (CDC), 2016.

[12] I. Nielsen and D. Axehill, “A parallel structure exploiting factorization
algorithm with applications to model predictive control,” in IEEE
Conference on Decision and Control (CDC), 2015, pp. 3932–3938.

[13] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, 2011.

[14] J. Andersson, “A General-Purpose Software Framework for Dynamic
Optimization,” PhD thesis, KU Leuven, 2013.
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