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Kinodynamic Trajectory Optimization and Control for Car-Like Robots

Christoph Rösmann1, Frank Hoffmann1 and Torsten Bertram1

Abstract— This paper presents a novel generic formulation of
Timed-Elastic-Bands for efficient online motion planning of car-
like robots. The planning problem is defined in terms of a finite-
dimensional and sparse optimization problem subject to the
robots kinodynamic constraints and obstacle avoidance. Control
actions are implicitly included in the optimized trajectory.
Reliable navigation in dynamic environments is accomplished
by augmenting the inner optimization loop with state feedback.
The predictive control scheme is real-time capable and responds
to obstacles within the robot’s perceptual field. Navigation in
large and complex environments is achieved in a pure pursuit
fashion by requesting intermediate goals from a global planner.
Requirements on the initial global path are fairly mild, compli-
ance with the robot kinematics is not required. A comparative
analysis with Reeds and Shepp curves and investigation of
prototypical car maneuvers illustrate the advantages of the
approach.

I. INTRODUCTION
In the context of mobile robot navigation trajectory plan-

ning and control constitutes a fundamental task in applica-
tions such as service robotics and autonomous transportation
systems. Online planning is preferred over offline solutions
since the former integrate planning with state feedback
and respond to dynamic environments and perturbations at
runtime. The elastic band (EB) approach is well known
for online path deformation [1]. Predefined internal forces
contract the path while external forces maintain a separation
from obstacles. However, conventional path planning does
not explicitly incorporate temporal and (kino-)dynamic con-
straints. An extension of the EB approach to online deforma-
tion of trajectories rather than paths is presented in [2]. Dis-
crete trajectory waypoints are repelled from obstacles. Their
connectedness w.r.t. a dynamic motion model is restored
afterward. Delsart et al. combine both stages into a single
operation [3]. However, online trajectory optimization based
approaches are often limited by the computational burden
to converge to a feasible and optimal solution under real-
time constraints. Sampling-based approaches, such as the
dynamic window approach (DWA) [4], address this issue of
computational efficiency. Simulated trajectories are sampled
and repeatedly scored from a velocity search space restricted
by a set of feasible velocities w.r.t. the remaining distance to
the goal, the velocity and separation from obstacles. Lau et
al. [5] optimize trajectories represented by splines according
to kinodynamic constraints of the robot.

Most planners only consider non-holonomic constraints
of a differential-drive robot, which however does not cap-
ture the minimum turning radius of a car-like robot. An
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overview about feedback control techniques is provided
in [6]. Lamiraux et al. present a path deformation based on
potential gradients [7]. The approach rests upon smooth path
representations and velocity limits are not covered explicitly.
This substantially constrains its direct application to parking
maneuvers. Vendittelli et al. provide collision free paths for
point-shaped robots based on the well-known Reeds and
Shepp (RS) curves [8]. RS curves provide analytic solutions
of the minimum-time optimal control problem w.r.t. the
kinematic model [9]. Also, the classical EB has been adopted
to car-like robots [10]. Hereby, consecutive path points on
which internal and external forces act, are connected by
RS curves. Furthermore, Bézier polynomials are utilized for
smoother transitions. However, the deformation is not subject
to arbitrary velocity and acceleration limits so that time
scaling is required to determine a feasible albeit non-optimal
trajectory. Gu et al. [11] present a multi-stage planning
approach that utilizes an optimization-free EB to generate
paths followed by a speed planning stage. In the context
of direct trajectory optimization, the DWA is extended to
support car-like robots in [12] as it restricts the search
space of rotational velocities to the set of feasible solutions.
However, the assumption of constant velocities in prediction
prohibits motion reversals required to navigate in confined
spaces. A non-realtime-capable, but complete optimal control
formulation that considers kinodynamic constraints and trav-
eling time is presented in [13]. Other approaches rest upon
search based strategies, e.g. using cell decomposition in [14]
or by applying smoothing filters to well-known (global)
rapidly exploring random trees [15].

The Timed-Elastic-Band (TEB) approach provides a real-
time capable online trajectory planner for differential-drive
robots [16], [17]. It is inspired by the idea of the EB method
but reformulates planning of trajectory and controls as a
sparse optimization problem. The TEB mimics a predictive
controller and efficiently optimizes the trajectory w.r.t. (kino-
)dynamic constraints while explicitly incorporating temporal
information to achieve a time-optimal solution.

This contribution presents a novel and more generic for-
mulation of the original TEB approach which is among
others the support of motion reversals and generic obsta-
cle representations. Furthermore, it is extended to generate
trajectories and control actions for car-like robots during run-
time. The TEB is intended as a local planner in a hierarchical
navigation architecture. The TEB planning horizon coincides
with the robots perceptual range, the remote path based on
a static map is entrusted to the global planner. The TEB
approach is available as open-source C++ code and integrated
into ROS [18] and provides the first local planner for the



navigation stack in ROS that supports car-like robots.
The paper is organized as follows: Section II details the

kinematic model and reformulates the TEB approach for car-
like robots. Section III presents simulations and experiments.
It shows that the TEB solution coincides with RS curves in
the obstacle-free case. It analyzes parallel parking scenarios
of a car like robot. Section IV summarizes the results.

II. THEORETICAL BACKGROUND
A. Kinematic Model of a Car-Like Robot

This section recapitulates the kinematic model of a car-
like robot shown in Fig. 1a w.r.t. the world frame (xw, yw).
The car exhibits the planar motion of a rigid body in which
s = [x, y, β]ᵀ ∈ R2 × S1 denotes the current vehicle
configuration. The base frame is located at the center of the
rear axle and its x-axis is aligned with the main axis of the
robot. The steering angle is limited to φ ∈ (−φmax, φmax)
with φmax ∈ (0, π2 ). The term v ∈ R denotes the signed
translational velocity w.r.t. the robot’s x-axis. The motion of
the two rear wheels and their translational velocities vr ∈ R
and vl ∈ R are decoupled by a differential gear such that
v = 0.5(vl + vr). L ∈ R+ denotes the wheelbase in terms
of distance between front and rear axles.

The motion of the car-like robot is described by nonlinear
ordinary differential equations [9]:

ṡ(t) =

ẋ(t)
ẏ(t)

β̇(t)

 =

v(t) cos
(
β(t)

)
v(t) sin

(
β(t)

)
v(t)
L tan

(
φ(t)

)
 . (1)

The robot pose at time t is denoted by s(t) and u(t) =
[v(t), φ(t)]ᵀ defines the control. ss denotes the initial state
at time t = 0 s. We assume that the robot motor controllers
accurately track the commanded reference speed and steering
angle. Notice, that the model does not consider robot dynam-
ics in terms of forces, torques, and inertia of the car. The
actual feasible turning radius at high speeds might be lower
than the geometric minimum turning radius. Nevertheless,
the kino-dynamic model accounts for bounds on velocities
as well as accelerations.

The optimal control input sequence u∗(t) that mini-
mizes an objective function while it adheres to the car’s
kinematic (1) is retrieved by means of a (direct) optimal
control framework. The underlying optimization problem
is discretized and minimized either w.r.t. the controls only
(sequential approach) or w.r.t. to both configurations and
controls (simultaneous approach). Although the latter formu-
lation leads to a larger solution vector it achieves in general
better convergence due to the local and sparse structure of
the optimization problem.

The control input u(t) is directly inferred from the tra-
jectory s(t) respectively its temporal derivative according to
the inverse of (1):

u(t) =

[
v(t)
φ(t)

]
=

[
γ(·)

√
ẋ2(t) + ẏ2(t)

tan−1
(
Lv−1(t)β̇(t)

)] . (2)

Function γ(·) retains the direction of velocity and is de-
scribed in section II-B.1. In case of v(t) = 0 in (2), φ(t)
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Fig. 1: Geometry of the car-like robot and poses.

is merely the last known valid steering angle or a constant
reference. The closed form solution for u(t) defines the
optimization problem in terms of robot configurations only.
This reduces the dimensions of the solution vector while it
maintains the sparse structure of the original simultaneous
formulation. The elimination of u(t) allows a purely geo-
metric formulation of the condition imposed on consecutive
states for car-like kinematics in (1).

According to (1), the robot performs straight line motions
in case β̇(t) = 0 respectively φ(t) = 0. For a constant
steering angle φ, the robot describes a circular path with
radius ρ = L/ tan (φ). The maximum steering angle φmax
causes a minimum turning radius ρmin of the robot. Let
(sk)k=1,2,...,n denote a sequence of discretized robot con-
figurations sampled from s(t) by applying constant control
inputs uk between two consecutive time instances k.

Straight line and circular motions require two consecutive
poses sk and sk+1 to be located on a common arc of constant
curvature. Let ϑk,k denote the angle between configuration
sk and the direction dk = [xk+1 − xk, yk+1 − yk, 0]ᵀ at
time k (refer to Fig. 1b). Similarly, ϑk,k+1 defines the angle
between dk and configuration sk+1 at time k+1. A common
arc of constant curvature is obtained if and only if ϑk,k and
ϑk,k+1 are equal:

ϑk,k = ϑk,k+1, (3)

hk(sk+1, sk) =

(cos(βk)
sin(βk)

0

+

cos(βk+1)
sin(βk+1)

0

)× dk = 0.

(4)

Constraint (4) is compliant with the robot turning in place
(dk = 0). An auxiliary condition accounts for the minimum
turning radius φmax. According to Fig. 1b, the arc length Rk
is defined by Rk = ρk∆βk with turning radius ρk. For non-
holonomic robots, the angle ∆βk ∈ S1 equals the change
of robot orientation in the transition between sk and sk+1

and hence is computed according to ∆βk = βk+1 − βk.
Changes of orientation are mapped to the interval (−π, π].
The turning radius ρk is described by the trigonometry of
circular segments:

ρk =
‖dk‖2∣∣∣2 sin
(

∆βk

2

)∣∣∣ ∆βk�1
≈ ‖dk‖2

|∆βk|
. (5)

The robot motion has to comply with (4) and ρk ≥ ρmin.



B. Timed-Elastic-Band (TEB) Optimization Problem

This section introduces the TEB optimization formulation.
The overall objective is to steer the car-like robot from a
start ss to a desired goal configuration sf in minimum time.
The underlying optimization problem is defined in terms
of a finite-dimensional parameter vector composed of the
discretized sequence of n robot configurations (sk)k=1,2,...,n

from section II-A. The TEB approach incorporates tempo-
ral information directly into the optimization problem and
thus accounts for the minimization of transition time under
kinodynamic constraints. Let (∆Tk)k=1,2,...,n−1 denote a
sequence of strictly positive time intervals ∆Tk ∈ R+. Each
∆Tk describes the time required to transit from sk to sk+1.
The set of parameters subject to optimization is defined by:

B := {s1,∆T1, s2,∆T2, . . . , sn−1,∆Tn−1, sn} (6)

The TEB optimization problem is formulated as a nonlinear
program:

min
B

n−1∑
k=1

∆T 2
k (NLP)

subject to
s1 = sc, sn = sf , 0 ≤ ∆Tk ≤ ∆Tmax,

hk(sk+1, sk) = 0, r̃k(sk+1, sk) ≥ 0,

ok(sk) ≥ 0,

νk(sk+1, sk,∆Tk) ≥ 0, (k = 1, 2, . . . , n− 1)

αk(sk+2, sk+1, sk,∆Tk+1,∆Tk) ≥ 0,(k = 2, 3, . . . , n− 2)

α1(s2, s1,∆T1) ≥ 0, αn(sn, sn−1,∆Tn−1) ≥ 0.

Initial and final configurations, s1 and sn, are tied with
the current robot state sc obtained from robot localization
and goal state sf . The strictly positive time interval ∆T is
bounded from above to ∆Tmax to accomplish an appropriate
discretization of the continuous time motion in terms of
the discrete model provided in section II-A. Minimizing∑
k ∆T 2

k tends to obtain uniform time intervals (proof fol-
lows by Lagrange multiplier method). The equality constraint
hk(·) satisfies the kinematics equation (4) while inequality
r̃k(·) imposes a minimum turning radius with r̃k(·) =
rk− ρmin. The approximation of the turning radius for small
angles in (5) is valid in case of small ∆Tmax. Notice, that for
∆βk → 0 the arc length Rk tends to infinity. This case is
considered separately in the particular solver implementation.
In the constraint approximation from section II-C, r̃k(·) is
set to 0 for ∆βk = 0 without violating C1 differentiability.

The remaining equality and inequality constraints reflect
kino-dynamic bounds and clearance from obstacles.

1) Limited Velocity and Acceleration: According to sec-
tion II-A, the translational velocity of configuration sk at
discrete time step k is denoted as vk. The robot covers
a distance Rk in between sk to sk+1 given by (5) and
Rk = ρk∆βk. Therefore, its velocity vk is defined by:

vk =
ρk∆βk
∆Tk

γ(sk, sk+1)
∆βk�1
≈ ‖dk‖2

∆Tk
γ(sk, sk+1). (7)

γ(·) denotes the sign of the robot velocity. Since the motion
of the robot is restricted to sequential linear and circular

movements, the projection of the orientation vector qk =
[cosβk, sinβk, 0]ᵀ onto the distance vector dk results in

γ(sk, sk+1) = sign(〈qk,dk〉) ≈
κ〈qk,dk〉

1 + |κ〈qk,dk〉|
(8)

with scalar product operator 〈·, ·〉. A sigmoidal approxima-
tion of (8) with γ(·) ∈ [−1, 1] is employed as most of
the common optimization algorithms are not suited for non-
continuous functions. Parameter κ ∈ R+ denotes a scaling
factor that defines the slope (e.g. κ = 102). Both terms
cause incorrect velocities at 〈qk,dk〉 = 0 or 〈qk,dk〉 ≈ 0
respectively. Figuratively, this situation occurs if pose sk+1

is orthogonal to pose sk. However, such a configuration
is not within the feasible set given by constraint (4) and
for the special case in which the position parts of both
poses coincide it is dk = 0 =⇒ vk = 0. Both the
actual and the Euclidean distance approximation of the arc
segment in (7) are applicable. In the remainder, only the
latter, approximative description is investigated.

The angular velocity ωk = ∆βk

∆Tk
of configuration sk is

inherently bounded to |ωk| ≤ ωmax with ωmax = vmaxρ
−1
min.

Limits ±vmax and ±ωmax are enforced by inequality con-
straint νk(sk+1, sk,∆Tk) = [vmax − |vk|, ωmax − |ωk|]ᵀ.

Similarly, translational accelerations ak are limited to
±amax. In particular, ak is defined by finite differences:

ak =
2(vk+1 − vk)

∆Tk + ∆Tk+1
. (9)

For the sake of clarity, sk+2, sk+1 and sk are substituted
by their related velocities (7). The resulting inequality is
αk(sk+2, sk+1, sk,∆Tk+1,∆Tk) = amax − |ak|. Special
cases occur at k = 1 and k = n − 1 for which v1 and
vn−1 are substituted by the desired start and final velocities
(vs, ωs) and (vf , ωf ) respectively.

2) Clearance from obstacles: The robot trajectory is sup-
posed to reach the goal without any collision with obstacles.
An obstacle is modeled as a simply-connected region in R2

and is denoted as O. In the presence of R obstacles Ol, l =
1, 2, . . . , R, the subscript l is added. The distance between
configuration sk and the obstacle perimeter is quantified in
a continuous metric space, e.g. the Euclidean metric. Let
δ(sk,O) : R2×S1×O → R describes the minimal Euclidean
distance between obstacle O and pose sk. A minimum
separation δmin between all obstacles and configuration sk
is defined by the inequality constraint:

ok(sk) =[δ(sk,O1), δ(sk,O2), . . . , δ(sk,OR)]ᵀ

− [δmin, δmin, . . . , δmin]ᵀ.
(10)

The obstacle set O is updated online to account for dynamic
environments. Additionally, prediction models for dynamic
obstacles might be included in ok(·).

C. Approximative Least-Squares Optimization

Solving nonlinear programs with hard constraints is com-
putational expensive. Therefore, improving the efficiency of
fast online solvers has been a focus of research in nonlinear
optimization over the last decade. The TEB approach rests



upon unconstrained optimization techniques since they are
well studied and mature implementations in open-source
packages are widely available.

The exact nonlinear program (NLP) is transformed into an
approximative nonlinear squared optimization problem that is
solved efficiently as the solver approximates the Hessian by
first order derivatives while it exploits the sparsity pattern of
the problem. Constraints are incorporated into the objective
function as additional penalty terms. In the following the
arguments of constraints are omitted for better readability.
The equality constraint h is expressed in terms of a quadratic
penalty with a scalar weight σh and identity I by:

φ(hk, σh) = σhh
T
k Ihk = σh‖hk‖22. (11)

Inequalities are approximated by weighted one-sided
quadratic penalties:

χ(νk, σν) = σν‖min{0,νk}‖22. (12)

The min-operator is applied row-wise. Additional inequali-
ties αk and ok are approximated in a similar fashion. Initial
and final constraint, ss and sf respectively, are eliminated by
substitution and are therefore not subject to the optimization.
The overall unconstrained optimization problem with objec-
tive function Ṽ (B) that approximates (NLP) is given by:

B∗ = arg min
B\{s1,sn}

Ṽ (B), (13)

Ṽ (B) =

n−1∑
k=1

[
∆T 2

k + φ(hk, σh) + χ(r̃k, σr) + χ(νk, σν)+

+ χ(ok, σo) + χ(αk, σα)
]

+ χ(αn, σα). (14)

B∗ denotes the optimal solution vector. The theory of
quadratic penalties [19] states that B∗ only coincides with
the actual minimizer of the nonlinear program (NLP) in
case all weights tend towards infinity σ →∞. Unfortunately,
large weights introduce ill-conditioning of the problem such
that the underlying solver does not converge properly due
to inadequate step sizes. The TEB approach abandons the
true minimizer in favor of a suboptimal but computation-
ally more efficiently obtainable solution with user defined
weights. For small to medium sized cluttered environments
within the robots local field of perception our experiments
reveals that unit weights of 1 provide a reasonable point
of departure, except for the weight σh associated with the
equality constraint of the non-holonomic kinematics which
is a few orders of magnitude larger (≈ 1000).

For solving (14), the TEB approach utilizes the Levenberg-
Marquardt (LM) method due to its proper balance between
robustness and efficiency. The graph optimization framework
g2o [20] implements a highly efficient sparse variant of LM
that solves (13). Since terms of (NLP) depend only on a
small subset of parameters, the underlying Hessian is sparse
and banded.

D. Closed-loop Predictive Control

The TEB approach defines a predictive control strategy in
order to account for disturbances, map, and model uncertain-

ties and dynamic environments that guides the robot from its
current pose sc towards a goal pose sf .

Problem (NLP) is solved repeatedly at a rate faster than
the robot control cycle rate. At each sampling instance, the
control action u1 is inferred from the optimized trajectory
B∗ by applying (2) and finite differences (e.g. refer to (7)).
The overall algorithm is given by:

1: procedure TIMEDELASTICBAND(B, sc, sf , O)
2: Initialize or update trajectory
3: for all Iterations 1 to Iteb do
4: Adjust length n
5: Update obstacle constraints from set O
6: B∗ ← SOLVENLP(B) . solve (NLP)
7: Check feasibility
8: u∗1 ← Map B∗ to u∗1 . obtain [v1, φ1]ᵀ with (2)

return (sub-) optimal u∗1
The initial solution B is obtained from a sparse set of
collision free linear path segments generated by a global
coarse planner. The initial band is composed of robot states
sk located on the coarse path equidistant in space and time.

Obviously, the initialization strategy effects which the
convergence to competing local optimal solutions and is
discussed in the analysis section. The set B∗ is fed back
in subsequent sampling intervals to warm-start consecutive
optimizations. Since the proposed optimization problem min-
imizes transition time towards a fixed final configuration, the
strategy operates with a shrinking horizon.

An outer optimization loop with Iteb iterations maintains
the length respectively resolution of the current trajectory.

The number of configurations n is updated depending on
the temporal discretizations ∆Tk:
• If ∆Tk < ∆Tref −∆Thyst ∧ n > nmin, remove sk.
• If ∆Tk > ∆Tref + ∆Thyst ∧ n < nmax, insert new

configuration between sk and sk+1.
∆Tref ∈ (0,∆Tmax] denotes the desired temporal resolution
and ∆Thyst introduces a hysteresis to avoid oscillations. The
number of samples is further limited to nmin ≤ n ≤ nmax.
Novel configurations are inserted by linear interpolation
between successor and predecessor pose.

The adaption of the length of the horizon for such a
shrinking horizon problem offers the major advantage of
decoupling path length and overall transition time: The
number of poses as well as the number of motion reversals
that are required to satisfy (4) is unknown and changes with
dynamic obstacles. Insertion and deletion of states at runtime
allows the overall path length to contract or extend, while the
deformed trajectory still complies with the imposed temporal
discretization.

Under some preliminaries, predictive controllers with final
equality constraints, such as sn = sf , can be shown to
enforce stability as long as the subsequent solutions of the
underlying optimization problem are feasible. However, a
stability analysis is beyond the scope of this paper. We
assume the feasibility of the (approximative) optimization
problem which is sufficient for the investigated scenarios.
On the other hand, there are obstacle scenarios for which
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no solution exist in terms of satisfying all constraints. Hence
feasibility is confirmed by an external collision check at each
sampling interval before applying the motion command.

III. ANALYSIS AND EXPERIMENTS

This section compares the trajectories generated by the
TEB approach in the absence of obstacles with the optimal
analytical solution in terms of Reeds and Shepp curves. It
investigates the TEB for car like robots in typical parallel
parking scenarios. Simulations are performed in C++ (PC:
3,4 GHz Intel i7 CPU).

A. Comparison with Reeds and Shepp Curves

Reeds- and Shepp (RS) curves describe the complete set
of paths of a car like robot with kinematics (1) from start to
goal in the absence of obstacles [9]. Under limited controls
v(t) ∈ {−1, 1} and φ(t) ∈ (−φmax, φmax) the shortest path
corresponds to the minimum time solution and provides our
reference in the following analysis. Since RS curves do not
consider dynamics, no TEB acceleration constraints in (NLP)
are imposed. The minimum turning radius is set to ρmin =
1.0 m. The desired temporal reference is ∆Tref = 0.2 s. Outer
loop iterations (Iteb) of the TEB planner in section II-D are
repeated upon convergence. For the solution of (13) five
iterations of Levenberg-Marquardt are performed with the
g2o-framework. Fig. 2 illustrates the planned trajectories for
a fixed start ss = 0 and multiple goal poses. The TEB
waypoints are initialized along the straight line connecting
the start and goal pose with no a-priori reversal of driving
direction. In eight of twelve cases, the path obtained from
the TEB approach coincides with the optimal RS curve. In
the remaining cases, the LM solver converges to a local
minimum closest to the initial solution. The four trajectories
are symmetric to the RS curve and are of equal length
and transition time. In the general case of environments
with obstacles global optimality of the trajectory can not
be guaranteed as the initial path is locally optimized.

The following analysis investigates the trajectory resolu-
tion, traveled distance and computational effort w.r.t. to the
lower bound on the turning radius ρmin. The robot reverses
its orientation in a cuspidal motion from ss = [2, 0, 0]ᵀ to
sf = [−2, 0, π]ᵀ. The initial TEB is composed of merely
n = 5 equidistant waypoints along a straight line from start

to goal. Table I reports the traveled distances (path lengths)
and computation time upon convergence to the optimal RS
curve. During optimization, the number of TEB waypoints
n increases to comply with the spatio-temporal resolution.
Even for a path length of 25 m and more than 100 waypoints
the LM solver converges within less than 40 ms.

B. Parking Scenarios

In addition to velocity bounds the maximum acceleration
of the robot is limited amax = 1.5 m/s2. The obstacle
constraint in (10) inflates the Euclidean distance between
the rectangular car footprint (length: 0.6 m, width: 0.2 m,
L = 0.4 m) and polygon obstacles with δmin = 0.1 m.

Fig. 3 depicts parallel parking scenario with one or two
obstacles and initial biases for forward and reverse parking.
In case of a bias for reverse parking 3b and 3d, the initial path
(dashed lines) is composed of a straight forward segment
that extends beyond the gap succeeded by a back up along
a straight line. In case of two obstacles, the TEB converges
to distinct local optimal trajectories for either forward 3a or
reverse parking 3b. Fig. 4 illustrates velocity and steering
angle profile for trajectories 3a and 3b. The time optimal
solution exhibits maximum acceleration between the velocity
bounds vmax = 1 m/s and −vmax and extremal steering
angle φmax = atan−1(L/ρmin) = 0.38 rad. The forward
maneuver 3d is slightly faster than the more common reverse
parking option but becomes infeasible for curb-side parking
as the car veers beyond the curb to the right. In the case of
a single obstacle, forward parking 3c is faster and even the
initial trajectory biased towards reverse parking 3d converges
to the same global time optimal maneuver. If reverse parking
is strictly preferred, the global planner should impose an
intermediate way-point behind the gap. For comparison, the
paths resulting from the EB approach for car-like robots [10]
are depicted in Fig. 3. EB paths in 3a and 3b collide with
obstacles. The approach requires internal bubbles to have a
radius of at least

√
2ρ which substantially limits their usage

for parking maneuvers. Nevertheless, their minimum size is
reduced here, resulting in colliding RS curves. EB paths
in 3c and 3d are collision-free but not optimized w.r.t.
acceleration limits. Hence, time-scaling leads to non-time-
optimal trajectories.

C. Experimental Results

Fig. 5 illustrates the TEB planner on a Lego EV3 car-like
robot. Intermediate goals are obtained from a global planner
within a perceptual range of 1 m and hence the environment

TABLE I: Trajectories between ss = [2, 0, 0]ᵀ to sf =
[−2, 0, π]ᵀ for different minimal turning radii

ρmin [m] n Length [m] / RS Length [m] CPU Time [ms]

0.75 27 4.86 / 4.85 2.6
1.75 28 5.98 / 5.99 5.9
3.00 49 9.42 / 9.41 21.5
4.25 75 13.35 / 13.33 25.8
6.75 102 21.55 / 21.17 28.1
8.00 104 24.96 / 25.10 35.4
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shown with dotted lines (non-time-optimal since acceleration limits are not explicitly incorporated, infeasible in (a) and (b)).
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Fig. 5: TEB motion control of Lego EV3 Robot

changes online from a planning point of view. Localization is
performed with a motion capture system. Both collision-free
closed-loop trajectories guide the robot towards the goal pose
despite substantial backlash in steering and model mismatch
of the kinematics. In Fig. 5 (right) the TEB reconfigures its
initial path at approx. 10 s as it becomes aware of the obstacle
on the right only as it enters the robots perceptual range1

(width: 0.2 m, length: 0.28 m, φmax = 0.6 rad, L = 0.19 m,
vmax = 0.15 m/s).

IV. CONCLUSIONS

The generic TEB approach for local trajectory planning
and control offers substantial advantages for navigation of
car-like robots namely computationally efficiency, unsuper-
vised emergence of motion reversals and minimal require-
ments on the global planner. TEB reliably and efficiently
generates feasible minimum-time trajectories that constitute
not necessarily a global but in any case local optimum.

1Video available online: https://youtu.be/3FNPSld6Lrg
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[20] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2011, pp. 3607–3613.


	root - Kopie
	2017_Roesmann_IROS

