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Sparse Shooting at Adaptive Temporal Resolution for Time-Optimal
Model Predictive Control

Christoph Rösmann, Artemi Makarow, Frank Hoffmann and Torsten Bertram

Abstract— This contribution presents a novel approach for
time-optimal model predictive control. The underlying optimal
control problem rests upon an adaptive, local temporal dis-
cretization of the shooting grid and automatically determines
optimal switching points in the control sequence. Furthermore,
the grid size is adapted online in order to solve the control
problem with a minimum number of control interventions.
The approach offers significant advantages for bang-bang
control tasks which exhibit few transitions between a discrete
set of piece-wise constant control actions. Experiments and
a comparative analysis on different nonlinear control tasks
demonstrate the superiority of adaptive shooting grids w.r.t.
state-of-the-art approaches in model predictive control.

I. INTRODUCTION

Model predictive control (MPC) repeatedly solves a finite
horizon optimal control problem by taking the predicted
future evolution as well as constraints on states and control
variables into account [1]. Due to their large computational
burden, within the past decade researchers investigated nu-
merical efficient realizations of (nonlinear) MPC to extend
their application to nonlinear systems with fast dynamics.
In the context of continuous-time dynamic models, clas-
sical indirect optimal control methods are based on the
calculus of variations, whereas direct methods transform the
underlying optimal control problem into a finite parameter
nonlinear program. Direct methods are furthermore catego-
rized into either a sequential (single-shooting) or simultane-
ous (multiple-shooting, collocation) strategy. The sequential
strategy merely discretizes the control input trajectory and
thus requires the ongoing simulation of the future state evo-
lution at each solver step. In comparison, simultaneous strate-
gies discretize both state and control trajectories and usually
achieve better convergence due to their sparse albeit larger
problem structure. Diehl et al. propose multiple-shooting in
order to partition the time horizon into multiple discrete inter-
vals for which isolated initial value problems are solved [2].
Furthermore, the real-time iteration scheme applies only a
single warm-started sequential-quadratic-programming step
at each sampling interval to subsequently refine previous
solutions during runtime [3]. Condensing techniques exploit
the sparsity structure of nonlinear programs [4]. Interior-
point methods enable the exploitation of sparse problem
structures [5], [6], [7]. Graichen et al. present an efficient
real-time capable MPC method based on projected gradients
in [8]. In [9] the optimal control problem is transformed to
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an unconstrained auxiliary problem with interior penalties
which is solved by an efficient gradient method.

In the context of time-optimal MPC, Zhao et al. ap-
ply multiple-shooting for quasi time-optimal control of a
spherical robot [10]. Time-optimal reference path tracking is
achieved by choosing sufficiently large time horizons in [11].
In race car automatic control applications the MPC control
task is concerned with the minimization of the lap time [12],
[13]. Verschueren et al. compute time-optimal motions along
a Cartesian path for robotic manipulators [14]. Hereby, the
time horizon is transformed into a fixed integration grid along
the unit interval by applying an established time-scaling tech-
nique. A method called TOMPC minimizes the settling time
of point-to-point transitions [15]. An outer optimization loop
sequentially reduces the time horizon until the underlying
standard quadratic form optimal control problem is no longer
feasible. This iterative adaptation determines the minimal
feasible horizon length. The number of outer loop iterations
is determined by the gap between the initial and minimal
horizon length. Our previous approach [16] introduces a
time-optimal nonlinear MPC in which the global uniform
temporal resolution of the discretized state and control
trajectories is subject to optimization. Consequently, time-
scaling becomes obsolete though the numerical properties are
similar. The approach adapts the number of discretized states
and controls to adhere to the desired temporal resolution of
the discretization grid.

Time-optimal controllers usually operate the plant at either
control or state limits. Thus, many practical time-optimal
control problems consist of either bang-bang, bang-singular-
bang or a small finite set of piece-wise constant controls.
For these types of problems the number of effective control
interventions at which the control input changes is signifi-
cantly smaller than the ordinary temporal resolution of the
MPC horizon, e.g. in [16] and time-scaling with a previously
allocated fixed discretization grid. Our contribution addresses
this circumstance by reformulating time-optimal MPC with
a dynamic shooting grid. Individual time intervals of the
multiple shooting grid are subject to optimization in order to
enable the optimizer to explicitly determine the optimal time
instances of switching the control signal w.r.t. the overall
minimum time objective. The main feature of our approach is
an online adaptation of the shooting grid size. The objective
is a shooting grid in which the number of parameters that dis-
cretize the controls in the optimization becomes identical to
the effective number of control switches without any loss of
optimality. We phrase the term minimal control interventions
for such a minimal grid size control sequence. The grid size



adaptation is intertwined with the MPC control loop.
The next section presents the novel time-optimal MPC

with dynamic grids. Section III provides a comparative anal-
ysis with state-of-the-art approaches and experimental results
of a closed-loop position control of a servo drive system.
Finally, section IV summarizes the results and provides an
outlook on further work.

II. TIME-OPTIMAL MODEL PREDICTIVE CONTROL

A. Uniform Grid Time-Optimal Control Formulation

A continuous-time nonlinear, autonomous dynamic system
with state vector x(t) ∈ Rp, control input u(t) ∈ Rq and
initial state xs is defined by:

ẋ(t) = f
(
x(t),u(t)

)
, x(t = 0) = xs. (1)

The optimization task involves the solution of a boundary
value problem of system (1) with final state x(t = T ) = xf

at time T . Multiple-shooting [2] partitions the overall interval
[0, T ] into n subintervals:

0 = t0 ≤ t0 + ∆T0 = t1,

t1 ≤ t1 + ∆T1 = t2,

...

tn−1 ≤ tn−1 + ∆Tn−1 = tn = T.

(2)

Hereby, time intervals ∆Tk are usually but not necessar-
ily chosen uniform. The control input trajectory u(t) is
composed of piece-wise constant signals uk on a temporal
grid {t0, t1, . . . , tn}:

u(t) := uk for t ∈ [tk, tk + ∆Tk]. (3)

Since multiple-shooting solves isolated initial value problems
for each time interval, so called shooting nodes sk := x(tk)
are introduced for states on the grid tk. The initial value
problem on interval [tk, tk+∆Tk] with control uk and initial
state sk becomes:

x(tk + ∆Tk, sk,uk) =

∫ tk+∆Tk

tk

f
(
x(t),uk

)
dt. (4)

Carathéodory’s existence theorem addresses conditions for
a unique solution of (4). For the sake of simplicity, it
is assumed that f(·) is continuous and Lipschitz in x(t).
Connectivity between subsequent intervals is ensured if
sk+1 = x(tk + ∆Tk, sk,uk) holds for all k. These alge-
braic equations are incorporated in the following nonlinear
program to achieve a minimum time transition from xs to xf :

Ṽ ∗ = min
sk,uk,T

∫ T

t=0

1 dt = min
sk,uk,T

T (5)

subject to
s0 = xs, sn = xf ,

sk+1 = x(tk+1, sk,uk),

g(sk,uk) ≥ 0 (k = 0, 1, . . . , n− 1).

The minimum objective function value is denoted as Ṽ ∗

which coincides with the optimal transition time T ∗. Initial

s0 and final shooting node sn are constrained by xs and xf .
Furthermore, inequality constraints g : Rp × Rq → Rr such
as saturation limits on states and controls are included. If the
number of grid partitions n respectively distinctive constant
controls is sufficiently large (at worst full discretization), the
minimizer of (5) coincides with the minimum time solution
in the (quasi) continuous-time domain. For smaller but still
feasible dimensions the best (albeit suboptimal) solution for
the current grid is achieved. In case the number of controls
is significantly smaller the strategy still provides a possible
realization of move-blocking MPC in which the reduced
number of controls is explicitly traded for faster computation
times. Note, the existence of a true minimizer in (5) for
particular systems and constraints requires certain optimality,
feasibility and differentiability conditions to be hold (refer
to [17], [18]).

In the literature time-scaling constitutes a common ap-
proach to solve (5). Hereby, the systems dynamic equations
are scaled by T : ẋ(t) = T f

(
x(t),u(t)

)
in order to map

the time interval [0, T ] to [0, 1], thus operating with a
fixed underlying grid size which is independent of T (e.g.
see [14]). In [16] the grid is dependent on a common
uniform time interval ∆Tk := ∆T . Since T = n∆T
the optimal control problem (5) is expressed in terms of
∆T and optimization is performed w.r.t. ∆T rather than T
which obviates time-scaling. Notice, the formulation in [16]
utilizes finite differences instead of numerical integration.
Although the grid resolution is dynamic (∆T is subject to
optimization), we categorize the approach as a uniform grid
formulation in order to distinguish it from the dynamic grid
scheme proposed in the following.

B. Dynamic Grid Time-Optimal Control Formulation

In contrast to the previous approaches, individual time
intervals ∆Tk ∈ R+

0 for k = 0, 1, . . . , n− 1 in the shooting
grid (2) are now retained as explicit parameters subject to
optimization. The proposed modified nonlinear program is
defined as follows:

V ∗ = min
sk,uk,∆Tk

n−1∑
k=0

[
∆Tk + λr(∆Tk)

]
(6)

subject to
s0 = xs, sn = xf , 0 ≤ ∆Tk,

sk+1 = x(tk + ∆Tk, sk,uk),

g(sk,uk,∆Tk) ≥ 0 (k = 0, 1, . . . , n− 1).

The term r : R+
0 → R denotes a regularization term weighted

by λ ∈ R+
0 . Inequalities g(·) in (5) are defined for grid

points sk and the grid is fine-grained respectively fixed
in the uniform case. In case of the dynamic grid in (6)
the optimizer itself separately adjusts time increments ∆Tk
and thus shifts the grids temporal foundation. Consequently,
inequalities either have to be independent of variable interval
increments ∆Tk or take them explicitly into account. In
order to transform the optimal control problem (5) to (6)
without changing g(·), the following assumption ensures that
inequality constraints are independent of ∆Tk:



Assumption 1: Inequality constraints g(sk,uk,∆Tk) are
satisfied for all intermediate states and controls on the inter-
val ∆Tk and hence sk can be substituted by any x(t) from
t ∈ [tk, tk+1] without violating the corresponding inequality
constraints in (5).

Remark 1: If constraints depend only on control inputs,
Assumption 1 is fulfilled since u(t) is constant for each
∆Tk (see (3)). For constraints involving the state evolution,
this property depends on the system equations (1). E.g. the
assumption is not satisfied if the optimal state trajectory
satisfies constraints at sk and sk+1 but not in the interior
of t ∈ [tk, tk+1] for some k. From a practical and imple-
mentation point of view, the assumption might be ensured
by sufficiently oversampling the state trajectory of the initial
value problem in the interval ∆Tk and by including the cor-
responding intermediate solutions as additional constraints.

Problem (6) with λ = 0 can be interpreted as a con-
catenation of n individual time-optimal control tasks with a
constant control uk each. For a sufficiently high resolution,
optimality w.r.t. the quasi continuous-time solution follows
from Bellman’s principle of optimality. The following cases
are distinguished: 1. If the number of time intervals n is
larger than the minimum number of control interventions
n∗, n − n∗ time interval parameters become redundant and
problem (6) is under-constrained. 2. If n is smaller than n∗

the optimal control problem might be either suboptimal w.r.t.
quasi continuous-time or infeasible.

Remark 2: In case the particular nonlinear program solver
does not handle under-constrained problems well, an ad-
ditional regularization term r(∆Tk) = ∆T 2

k with a small
weight λ ensures feasibility of the optimization. Notice, for
λ � 1 the objective becomes Vn ≈

∑
k ∆T 2

k for which
∆T ∗

k = T ∗/n constitutes the minimizer in terms of time
(proof follows by adding

∑
k ∆Tk = T ∗ with the method of

Lagrange multipliers). This solution exactly corresponds to
the uniform grid.

Note, in previous work [16] a uniform grid is utilized in
terms of a single temporal parameter ∆T subject to opti-
mization. Nonlinear program (6) exhibits a larger dimension
for same lengths n due to the inclusion of individual time
increments ∆Tk. This is compensated and further reduced by
a significantly smaller overall dimension n required for many
time-optimal control problems, especially those in which the
control is composed of bang and nice singular arcs. The
approach leads to a block-diagonal sparsity structure in the
primal optimization variables since each ∆Tk only effects
the two consecutive shooting nodes sk and sk+1.

C. Online Regulation of Minimal Control Interventions

In time-optimal control tasks the plant usually operates
either at state or control saturation limits. The optimal
trajectory often emerges from a sequence of few piece-
wise constant controls uk that include controls umin, umax

(bang arcs) or controls from the interior (singular arc). This
bang-singular-bang property is generally proven for single-
input nonlinear control-affine systems in the plane with
bounds only on controls [19]. Several publications verify

this property for certain classes of nonlinear systems. A
detailed summary on analytical synthesis of control tasks is
beyond the scope of this paper. In the following, we present a
regulation mechanism that adapts the grid size and resolution
in terms of the number elements (interventions) in the control
sequence n online. The objective is to seek a grid with
a minimum number of control interventions to realize the
underlying time optimal and time continuous control signal.

Assumption 2: There exists a finite n > 0 for which
the optimal control problem (5) is feasible and its solution
constitutes a unique minimizer such that necessary and
sufficient conditions hold.
This assumption is essential for every direct optimal control
formulation. The reader is referred to [17], [18], [20] for
further details. The minimal number of control interventions
with (6) is determined in an iterative manner by concurrently
testing the effect on an increase of an interventions to n+ 1
or decrease to n− 1 [21]. If the optimal transition time V ∗

is retained for a decrease, at least one control intervention
is obsolete. If the optimal transition time V ∗ is improved
with an increase, the current temporal grid structure is
suboptimal. Testing and regulation of n requires multiple
nonlinear programs to be solved in parallel and the linear
search substantially depends on the initial length n0 which is
not preferable for an online integration. Therefore, redundant
control interventions are identified by analyzing the control
input trajectory obtained from the previous solution of the
nonlinear program (6):

Algorithm 1 Regulation of number of control interventions
1: procedure ADAPTANDSOLVENLP(b, n∗

b )
2: for all Iterations i = 1, 2, . . . , I do
3: if i > 1 or b is a warm-start then
4: {nb,K} ← Count validity of |uk+1 − uk| ≤ ε ∀k in b
5: if nb < n∗

b then
6: b ← INSERTVARIABLES(b, n∗

b − nb)
7: else if nb > n∗

b then
8: b ← erase uk+1, sk+1 and ∆Tk+1 in b ∀k ∈ K

9: {V ∗,b∗} ← SOLVENLP(b) . solve (6)

10: if V ∗ is non-feasible then
11: b ← INSERTVARIABLES(b∗, 1)
12: Goto 9 and resolve
13: return b∗

Hereby, b denotes the current parameter vector sub-
ject to optimization: b = [sᵀ0 ,u

ᵀ
0 ,∆T0, s

ᵀ
1 ,u

ᵀ
1 ,∆T1, . . . ,

sᵀn−1,u
ᵀ
n−1,∆Tn−1, s

ᵀ
n]ᵀ with n = n0 at the first iteration.

The second argument n∗b ∈ N≥0 denotes a desired surplus
in the number of control interventions as explained below.
The initial b is obtained from a linear interpolation sk =
xs + kn−1(xf − xs) between start and final state with
zero controls uk = 0 in this work or later in section II-
D from previous closed-loop sampling intervals (warm-
start). If b does not constitute a warm-start, the procedure
first solves problem (6) in line 9. In subsequent iterations
the control input sequence is investigated for potentially
redundant control interventions nb in terms of equality of
subsequent controls |uk+1 − uk| ≤ ε. Theoretically, one



expects ε = 0 but in practical implementations a small
but finite margin accounts for numerical imprecision. The
indices k of redundant controls are gathered in set K. If
nb < n∗b , the grid is augmented by n∗b − nb additional
intermediary shooting nodes, controls and time intervals.
Insertion is performed subsequently for the currently largest
time interval max{∆Tk|∀k} by linear interpolation. In case
nb > n∗b , the redundant grid points and parameters with
indices K are removed from the control sequence.

Remark 3: If there is no surplus of grid points n∗b = 0
and the initial n0 is overestimated, problem (6) is under-
constrained such that nb > 0 and redundant grid points are
removed. At this point convergence is reached. On the other
hand, if n0 is underestimated such that the NLP solution
becomes infeasible, a new intermediary grid point is inserted
in line 11 and the nonlinear program is resolved with the
augmented grid structure. In case n0 is underestimated but
the NLP solution is suboptimal albeit feasible, all subsequent
controls differ (K = ∅), thus the algorithm does not enhance
the grid structure even though the true optimal solution
requires additional interventions. Consequently, n∗b > 0 is
crucial for recovering from suboptimal solutions with too few
interventions. n∗b is chosen such that V ∗(n) > V ∗(n + n∗b)
holds for all suboptimal n. In practice, n∗b = 1 is often
sufficient for a robust recovery.

Notice, for the online integration of Alg. 1 the nonlinear
program solver in line 9 might be terminated prior to conver-
gence. A suitable scheduling of solver iterations significantly
increases the overall convergence speed. Due to the sparse
structure, partial solutions are likely to indicate redundant
control interventions at an early stage of convergence. These
grid points are removed prior to complete convergence with
the benefit of reducing the number of parameters in subse-
quent iterations. In case of limited computational resources,
the number of control interventions is determined a priori by
invoking Alg. 1 on samples of initial states.

D. Closed-Loop Control

In this section the open-loop optimization is integrated
with state feedback in order to regulate system (1) to the
final target state xf . At each sampling interval the algorithm
operates according to:

Algorithm 2 MPC step invoked at each sampling instance
1: procedure FEEDBACKCONTROLSTEP(b,xs,xf )
2: Initialize or update trajectory
3: b∗ ← ADAPTANDSOLVENLP(b, n∗

b )
4: return {u∗

0,b
∗} . u∗

0 is the first control in b∗

The current plant state xs is either directly measurable or
estimated by a state observer. b denotes the parameter vector
fed back from the previous sampling interval. The initial
solution is constructed as described in section II-C. In line 2
the parameter vector is updated by replacing s0 and sn by
the most recent states xs and xf respectively. Optimization
along with the grid structure adaption is performed in line 3.
From the resulting parameter vector b∗ the imminent control
action u∗

0 is applied as input to the plant.

Stability properties in the context of MPC are summa-
rized in [18], [20]. MPC with final state constraints (sn =
xf ) as in (6) are shown to be stable in the absence of
disturbances and model mismatch if the initial solution is
already feasible [20]. The time-optimal objective function
in (6) is strictly monotonically decreasing towards the target
state xf . In case Alg. 1 converges in every MPC step
(refer to the discussion in Remark 3) stability follows from
Bellman’s principle of optimality under the above model and
disturbance assumptions.

III. EVALUATION AND EXPERIMENTS

This section evaluates the proposed approach on two
simulated nonlinear control problems and demonstrates its
feasibility experimentally for feedback control of an indus-
trial servo drive. Optimal control problem (6) is solved with
IPOPT [22] and HSL-MA57 as internal linear solver [23].
IPOPT constitutes a C++ interior point solver for sparse non-
linear programs. For the evaluation part IPOPT is provided
with numerically computed Jacobian and Hessian matrices
to avoid convergence effects that tend to emerge in iterative
BFGS methods [17]. In our implementation, the sparsity
structure is further exploited by representing the complete
nonlinear program as a hyper-graph which vertices denote
optimization parameters in b and which edges denote the
equality and inequality constraints as well as the summands
of the objective function. Dense block Jacobian and Hes-
sian submatrices are computed edge-wise and finally all
submatrices are combined into the overall sparse Jacobian
resp. Hessian matrices. For the examples below, a dedicated
regularization is omitted with λ = 0. Computations are
performed in C++ (PC: 3.4 GHz Intel i7 CPU, Ubuntu).

A. Free-Space Rocket System

The free-space rocket system constitutes a common bench-
mark in the MPC literature:

ṡ(t) = v(t),

v̇(t) = (u(t)− 0.02 v(t)2)/m(t),

ṁ(t) = −0.01u(t)2.

(7)

Hereby, s(t) denotes the distance traveled, m(t) ≥ 0 denotes
the mass and v(t) the rocket’s velocity which is bounded
to −0.5 ≤ v(t) ≤ 1.7. The control input u(t) is limited
to |u(t)| ≤ 1. With state vector x(t) = [s, v,m]ᵀ the
system dynamics are expressed in the form f(·). Furthermore,
inequality constraints are combined to g(sk, uk) = [u +
1,−u + 1, v + 0.5,−v + 1.7,m]ᵀ ≥ 0. Note, g(·) satisfies
Assumption (1). Whenever the velocity bound is active be-
tween two consecutive shooting nodes the constraint v̇ = 0 is
imposed which is accomplished by uk = 0.02·1.72 = 0.0578
in case of the upper bound. This particular uk is always
feasible which applies to the other state bounds as well. The
control task is to transit from the initial state xs = [0, 0, 1]ᵀ

to the target state xf = [sf , 0, ·]ᵀ in minimum time with
sf ∈ {10, 30}. As the final mass mf is a priori unknown the
final state m is subject to optimization. Numerical integration
of (4) is performed with forward Euler and a step width
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Fig. 1: Open-loop control of the free-space rocket system

of 0.1 s. Fig. 1 shows the resulting state and control input
trajectories for different controllers and sf = 30. For com-
parison, the uniform grid approach presented in [16], time-
scaling and TOMPC are taken into account. Time-scaling and
TOMPC are omitted in Fig. 1 since their trajectories coincide
with the uniform grid solution for n = 195. The resolution
of n = 195 is chosen in order to accomplish a comparable
resolution of ∆T = 0.1 s (full discretization). For both
uniform grid approaches fewer states sacrifice upon global
optimality (refer to the uniform grid with n = 3). Note,
TOMPC always converges towards the optimal trajectory
with a linear search in terms of increasing or decreasing n.
The dynamic grid approach perfectly coincides with the
n = 195 uniform solution sequence with n∗ = 3 states and
hence three control interventions only. A suboptimal solution
for n = 2 is shown as well. Table I reports computations
times for both sf = 30 and a closer target sf = 10 with
T ∗ = 7.7 s. References of computational performance are
evaluated in two configurations: 1. full discretization, i.e.
n = 77 for sf = 10, and 2. at least a NRMSE of 0.5 %
w.r.t. the dynamic grid, i.e. n = 40 for sf = 10 and
n = 120 for sf = 30. Notice, the CPU time of TOMPC
is significantly larger even for a perfect initial guess n∗

since at each step at least two optimal control problems
are solved and the objective function includes the evaluation
of quadratic form terms for all shooting nodes. In order to
analyze the convergence properties of Alg. 1 the control
task with sf = 10 is considered for varying initial control
sequence lengths n0. IPOPT is configured to terminate after
ten iterations for each outer loop iteration of Alg. 1. Fig. 2a
shows the CPU times until convergence w.r.t. n0. It is quite

TABLE I: Rocket system computation times

Method CPU Time sf = 10 CPU Time sf = 30

Dynamic grid n∗ = 3 (15.3± 0.4)ms (64.5± 0.7)ms
Uniform grid n = 40; 120 (42.1± 0.6)ms (113.7± 1.2)ms

Uniform grid n∗ = 77; 195 (65.1± 1.0)ms (175.0± 1.8)ms
Time-scaling n = 40; 120 (43.7± 3.4)ms (80.0± 3.1)ms

Time-scaling n∗ = 77; 195 (70.8± 3.1)ms (132.0± 3.6)ms
TOMPC n∗ = 77; 195 (396.8± 1.9)ms (436.0± 4.1)ms
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Fig. 3: Open-loop control of the Van-der-Pol Oscillator

remarkable that IPOPT displays a convergence boost for an
approximately uniform discretization at around n0 = 77. The
number of outer loop iterations I until convergence towards
n∗ = 4 + n∗b with n∗b = 1 is depicted in Fig. 2.

B. Van-der-Pol Oscillator

The Van-der-Pol system ẍ(t) + (x2(t)− 1)ẋ(t) + x(t) =
u(t) constitutes an oscillatory dynamic system with nonlinear
damping. With state vector x = [x(t), ẋ(t)]ᵀ and control
input |u(t)| ≤ 1 the state space model is defined by:

ẋ = f(x, u) = [ẋ, −(x2 − 1)ẋ− x+ u]ᵀ. (8)

The second state is constrained to |ẋ(t)| ≤ 0.5. Inequalities
g(·) are constructed according to the procedure in Sec-
tion III-A. The optimal control problem demands a transition
from xs = [0, 0]ᵀ to xf = [1, 0]ᵀ in minimum time. Notice,
the state constraint introduces a non bang-bang control type
since −x(t) + u(t) = 0 must hold for an active bound
with ẋ(t) = 0 and implies a linear dependency on the
non-constant state x(t). Consequently, Assumption 1 might
become invalid. According to Remark 1, two intermediate
state constraints are incorporated for g(·). The resulting
trajectories are depicted in Fig. 3. The constraint violation
case (c.v.) without the above modification is presented as
well. The reference approach (uniform grid) with n = 21
samples exhibits the (quasi) linear arc in the control sequence
for the active state bound. For the dynamic grid, Alg. 1 is
invoked with n0 = 20. Obviously, the dynamic grid matches
the optimal theoretical switching points more precisely (the
overall transition is 5 ms faster). The suboptimal solution for
a dynamic grid with n = 2 is shown as well.

C. Closed-Loop Control Experiment

This section investigates feedback control of an ECP
Industrial Plant Emulator Model 220. The system consists of



Fig. 4: ECP Industrial Plant Emulator Model 220
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two load plates actuated by motors which motion is coupled
by transmission belts (see Fig. 4). Encoder readings provide
a direct measurement of angular position and the angular
velocity is estimated from encoder signals with a DSP.

In the experimental setup, both motor generates actuation
torques in order to regulate the position and velocity of
the plate of the secondary drive. The system dynamics with
nonlinear damping and two control inputs are given by:

ẍ(t) = 4(k1u1(t)−k2u2(t))/J−
(
τc tanh(αẋ(t)+dẋ(t)

)
/J
(9)

with k1 = 9.5 · 10−2, k2 = 7.5 · 10−2, J = 3.39 · 10−2,
τc = 9.39 ·10−2, α = 5.37 and d = 1.93 ·10−2. The optimal
control problem is constructed similar to Section III-B with
state vector x(t) = [x(t), ẋ(t)]ᵀ, control bounds |u(t)| ≤ 0.5
and velocity bounds |ẋ(t)| ≤ 5. Note, that the simplified
dynamic equations exhibit a non-trivial model mismatch
w.r.t. the true coupled drive dynamics. For the closed-loop
control experiment, four target positions are commanded
as shown in Fig. 5. The controller is only aware of the
current target position (marked with dashed lines) and does
not look-ahead beyond the single step reference. Numerical
integration is performed with 5th-order Runge-Kutta with a
step width of 0.1 s and the MPC operates at 100 Hz.

IV. CONCLUSIONS AND FUTURE WORK

The comparative analysis of the proposed time-optimal
control formulation confirms that the dynamic shooting grid
achieves time-optimality with a significantly smaller number
of control interventions compared to current state-of-the-art
methods. This reduction in problem dimension is especially
beneficial for optimal control sequences composed of bang
and nice singular arcs. Furthermore, the online adaption of
the shooting grid resolution automatically determines the
minimum number of sufficient control interventions either
during runtime or a-priori offline. The experimental results

demonstrate the practical feasibility of the dynamic grid
MPC formulation for feedback control of a servo drive.

Future work investigates collocation methods subject to
dynamic discretization grids.
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