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Time-Optimal Nonlinear Model Predictive Control with Minimal
Control Interventions

Christoph Rösmann, Artemi Makarow, Frank Hoffmann and Torsten Bertram

Abstract— This paper presents a novel approach for time-
optimal model predictive control. In contrast to a global
uniform time scaling, the underlying optimal control problem
rests upon a dynamic, local temporal discretization of the
shooting grid. The approach seeks for a grid partition with
minimum overall transition time. Furthermore, a multi-stage
optimization iteratively adapts the number of grid points during
runtime to achieve a minimum number of control interventions.
A comparative analysis with previous approaches for three
nonlinear control problems demonstrates the superiority of the
proposed scheme. The feasibility is experimentally demonstra-
ted for position control of a servo drive operated at 200 Hz.

I. INTRODUCTION

Model predictive controllers explicitly consider constraints
on control and state variables as they repeatedly solve a finite
horizon optimal control problem during runtime [1]. Within
the past decade, the interest in efficient numerical realizations
of (nonlinear) model predictive control (MPC) has grown
considerably to expand their application to the control of
nonlinear systems with fast dynamics. The majority of recent
approaches focus on direct methods that solve the underlying
optimal control problem by means of a finite parameter non-
linear program. In contrast, classical indirect optimal control
methods rely on the calculus of variations. Direct methods
are divided into two common strategies: sequential (single-
shooting) and simultaneous (multiple-shooting, collocation).
Sequential methods determine the optimal control by solving
the nonlinear program w.r.t. only discretized control inputs.
They require the repeated simulation of the future state evo-
lution at each solver step. On the other hand, simultaneous
methods discretize both states and controls for optimization.
The resulting nonlinear program is of higher dimension
but due to its sparse structure exhibits better convergence
properties. In particular, multiple-shooting partitions the time
horizon into multiple discrete intervals, for which isolated
initial value problems are solved simultaneously [2]. Diehl
et al. present the real-time iteration scheme which applies
multiple-shooting to subsequently refine previous solution
at runtime [3]. The underlying nonlinear program is solved
with a single sequential-quadratic-programming (SQP) step
at each sampling interval. For quadratic programming, the
sparse structure of the nonlinear program is exploited by
(block) condensing techniques, e.g. in [4]. Other methods
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apply interior-point methods that exploit the sparse struc-
ture [5], [6], [7]. Graichen et al. present an efficient real-time
capable MPC method based on projected gradients in [8]. A
two-stage transformation technique with interior penalties is
applied to nonlinear MPC in [9] to solve an unconstrained
auxiliary MPC problem using an efficient gradient method.

In the context of time-optimal MPC, explicit cost terms for
minimization of the transition time are considered in [10]
for a quasi time-optimal control of a spherical robot. The
approach rests upon an indirect solution of the optimal
control problem. Lam et al. present an approach for following
a reference path in minimal time and achieve time-optimality
for sufficiently large time horizons [11]. In applications
such as race car automatic control, MPC methods mini-
mize the lap time [12], [13]. Verschueren et al. compute
time-optimal motions along a Cartesian path for robotic
manipulators [14]. Time-transformation is applied to the
underlying time-optimal control problem to specify a fixed
integration grid. Van den Broeck et al. propose a method
called TOMPC for minimizing the transition time of a point-
to-point transition [15]. In an outer optimization layer, the
horizon length (∝ transition time) of the control sequence
is reduced sequentially until the inner standard quadratic
form optimal control problem becomes infeasible. The initial
horizon length largely determines the required number of
iterations in the outer loop time horizon reduction.

Our previous work [16] introduces an approach to time-
optimal nonlinear MPC for point-to-point transitions based
on the concept of Timed-Elastic-Bands (TEB) [17]. The
TEB explicitly incorporates the global temporal resolution
as a parameter of optimization. Hereby, the optimal control
problem is solved with collocation and full discretization.
In contrast to previous approaches, time-scaling becomes
obsolete. Nevertheless, the numerical properties are similar
to time-scaling with a uniform grid. The approach further
maintains the number of discretized states to adhere to the
desired discretization width.

The time-optimal controls of many systems are either
bang-bang or belong to a small finite set of alternative piece-
wise constant controls. For these types of problems, the
number of effective control interventions at which u changes
is significantly smaller than the temporal discretization of
the MPC. Therefore the optimization step of the previous
problem formulation [16] is overburdened by an excess of
redundant control parameters. The same observation applies
to time-transformation methods in time-optimal control due
to their fixed discretization grids. This paper reformulates the
time-optimal point-to-point MPC in a manner that explicitly



achieves a minimal intervention control. For this purpose a
dynamic shooting grid represents the time-optimal sequence
with significantly fewer effective control parameters com-
pared to previous approaches. The contribution is two-fold:
First, the time-optimal control sequence is determined with
a dynamic grid and second, the grid size is adapted to
seek for the optimal partition with the minimum number of
interventions.

The next section presents the time-optimal control appro-
ach with a dynamic shooting grid. Section III evaluates and
analyzes the approach on two nonlinear benchmark problems
and reports experimental results of closed-loop position
control of a servo drive. Finally, section IV summarizes the
results and provides an outlook on further work.

II. TIME-OPTIMAL MODEL PREDICTIVE CONTROL

A. Formulation of the Optimal Control Problem

A nonlinear, time-invariant dynamical system with time-
dependent state vector x(t) ∈ Rp and control input u(t) ∈
Rq is defined by:

ẋ(t) = f
(
x(t),u(t)

)
, x(t = 0) = xs. (1)

The optimization task involves the planning of the control
trajectory u(t) for (1) to transit from the initial state xs to
the final target state xf in minimum time T . Consequently,
the optimization requires the ongoing solution of a boundary
value problem on the time interval [0, T ]. According to
the multiple-shooting technique [2] the overall interval is
partitioned into n subintervals:

0 = t0 ≤ t0 + ∆T0 = t1,

t1 ≤ t1 + ∆T1 = t2,

...

tn−1 ≤ tn−1 + ∆Tn−1 = tn = T.

(2)

In contrast to conventional approaches, individual time in-
tervals ∆Tk ∈ R+

0 for k = 0, 1, . . . , n − 1 are retained as
explicit parameters that form the sampling intervals of the
dynamic shooting grid. The control input trajectory u(t) is
constant during each time interval ∆Tk:

u(t) := uk for t ∈ [tk, tk + ∆Tk]. (3)

Multiple-shooting relies on the solution of isolated initial
value problems for each time interval ∆Tk which later on
are included in the optimal control problem as a system of
algebraic equations respectively constraints. Thus, so-called
shooting nodes sk := x(tk) are introduced for states on the
grid tk. The initial value problem on interval [tk, tk + ∆Tk]
with system (1), control uk and initial state x(tk) = sk
becomes:

x(tk + ∆Tk; sk,uk) =

∫ tk+∆Tk

tk

f
(
x(t),uk

)
dt. (4)

For the sake of readability, notation x(t; sk,uk) emphasi-
zes the associated shooting node sk and control input uk.
Conditions for the existence of a unique solution of (4) are

addressed in Carathéodory’s existence theorem. We assume
that f(·) is continuous and Lipschitz in x(t). To account for
a feasible transition between s0 and sn the final state at each
interval has to coincide with the subsequent shooting node,
in particular sk+1 = x(tk + ∆Tk; sk,uk) holds for all k.

The time-optimal control problem for the point-to-point
transition from xs to xf is defined as follows:

Ṽ ∗
n = min

sk,uk,T

∫ T

t=0

1 dt = min
sk,uk,T

T (5)

subject to
s0 = xs, sn = xf ,

sk+1 = x(tk+1; sk,uk),

g(sk,uk) ≥ 0 (k = 0, 1, . . . , n− 1).

Ṽ ∗
n denotes the minimum objective function value and coi-

ncides with the optimal transition time T ∗. Subscript n
indicates the number of intervals respectively controls uk.
Initial s0 and final shooting node sn are constrained by xs

and xf . Inequality constraints g : Rp×Rq → Rr are imposed
on control input uk and shooting node sk. Constraints often
refer to saturation limits on states and controls. Usually, for
solving optimal control problems such as (5), the systems
dynamic equations are scaled by T : ẋ(t) = T f

(
x(t),u(t)

)
.

Consequently, interval [0, T ] is mapped to [0, 1], thus ma-
king the underlying grid fixed and independent of T (e.g.
see [14]).

The dynamic grids (2) dependency on ∆Tk is incorporated
into the optimal control problem by means of the modified
nonlinear program:

V ∗
n = min

sk,uk,∆Tk

n−1∑
k=0

∆Tk (6)

subject to
s0 = xs, sn = xf , 0 ≤ ∆Tk ≤ ∆Tmax,

sk+1 = x(tk + ∆Tk; sk,uk),

g
(
sk(∆Tk),uk

)
≥ 0 (k = 0, 1, . . . , n− 1).

Parameter ∆Tmax defines an upper bound on the k-th interval
length.

Assumption 1: Inequality constraints g
(
sk(∆Tk),uk

)
are

satisfied for all intermediate states and controls on the inter-
val ∆Tk and hence sk can be substituted by any x(t) from
t ∈ [tk, tk+1] without violating the corresponding inequality
constraints in (5).

The assumption ensures that inequality constraints are
independent of varying interval lengths ∆Tk. Remark 1
provides a further discussion.

Assumption 2: There exists a finite n > 0 for which
optimal control problem (5) is feasible, and its solution
constitutes a unique minimizer such that necessary and
sufficient conditions hold.
This assumption is fundamental for every direct optimal
control formulation. The reader is referred to [19], [20] for
further details.



Theorem 1: Let x∗(t) and u∗(t) denote the feasible and
optimal state and control trajectories solving problem (5) for
t ∈ [0, T ∗] according to Assumption 2 and let Ṽ ∗

n denote
the corresponding global minimum value of the objective
function. Hereby, system (1) is fully discretized with n piece-
wise constant control inputs to ensure sufficient degrees
of freedom. Moreover, let inequality constraints satisfy As-
sumption 1 for all k. Then, the minimizer of optimal control
problem (6) coincides with the minimizer of (5) for λ = 0,
∆Tmax →∞ and same n such that V ∗

n = Ṽ ∗
n .

Proof: Both (5) and (6) share the same n (full dis-
cretization). Each grid partition [tk, tk + ∆Tk] in (6) can be
represented by an auxiliary time-optimal control problem (5)
with a single control input (n=1). Bellman’s principle of
optimality (Bellman’s equation) postulates that the minimum
of the concatenation (sum) of all individual time intervals
is identical to (6). In case the partitioning is not unique
(e.g. two consecutive controls are identical), Assumption 1
ensures that the inequality constraints are independent of the
grid discretization.

Remark 1: If constraints depend only on control inputs
(e.g. in the case of control bounds) Assumption 1 is fulfilled
since u(t) is constant for each ∆Tk (see (3)). For constraints
involving the state evolution, this property depends on the
system equations (1). However, the assumption might be
satisfied by oversampling ∆Tk sufficiently and by including
the resulting intermediate solutions of the initial value pro-
blems (4) as additional constraints. From a practical and
implementational point of view, each ∆Tk is divided into
m uniform time intervals of length ∆tk = ∆Tk/m. For
intermediate states x(tk+l∆tk; sk,uk) for l = 1, 2, . . . ,m−
1 further inequality constraints are added. Note, cases l = 0
and l = m are already included in (6). To comply with
Shannon’s sampling theorem the sampling times are bounded
by a finite ∆Tmax.

Remark 2: The reformulation of the nonlinear pro-
gram (6) retains the local structure of the optimal control
problem, since ∆Tk only affects the two consecutive shoot-
ing nodes sk and sk+1 explicitly. On the other hand, the
optimization benefits substantially from the dynamic grid
structure. The transition between two consecutive controls
uk and uk+1 is denoted as an intervention in the control
sequence if uk 6= uk+1. If the number of time intervals n
in (6) (respectively the degrees of freedom in the control
sequence) is larger than the minimum number of actually
required interventions n∗, n − n∗ time interval parameters
become redundant due to Bellman’s principle of optima-
lity and might be reduced to achieve shorter computation
times. Furthermore, solvers are required to handle under-
constrained problems, e.g. in terms of regularization.

Note, in the previous work [16] a uniform grid is utilized
regarding a single temporal parameter ∆T subject to opti-
mization.

B. Minimum Control Sequence Representation

Time-optimal control usually operates the plant at either
the state or controls saturation limits. For many common

control systems and tasks, the optimal trajectory consists
of a finite concatenation of a few constant controls uk

that include controls umin, umax (bang arcs) or controls
from the interior (singular arc). This bang-bang property
is generally proven for single-input nonlinear control-affine
systems in the plane with bounds only on controls [18]. Many
subsequent publications in the literature exploit this property
for the synthesis of control tasks for different systems.

In the following, problem (6) with its dynamic shooting
grid is solved in a multi-stage optimization to seek for a
minimum control representation, ideally but not necessarily
composed of bang and singular arcs. First, the influence
of the grid resolution respectively the length of the control
sequence n is investigated.

Let n∗ denote the length related to the minimum number
of required control interventions for a system (1) to transit
from xs to xf in minimum time T = T ∗ = V ∗

n∗ . Moreover,
the length to provide a (sub-)optimal but still feasible tra-
jectory is denoted by ncrit ≤ n∗ and leads to V ∗

ncrit
≥ V ∗

n∗ .
Consequently, for any n < ncrit problem (6) is infeasible
due to the lack of sufficient degrees of freedom and the
corresponding objective function is defined as V ∗

n :=∞. For
n > n∗ the problem is over-determined. This observation
suggests adjusting the length in an iterative manner by
comparing the objective functions V ∗

n−1, V ∗
n and V ∗

n+1 for a
given n. The following procedure performs this comparison:

1: procedure MULTISTAGESTEP(bn)
2: {V ∗

n ,b
∗
n} ← SOLVENLP(bn) . solve (6)

3: if V ∗
n is feasible then

4: bn−1 ← RESIZE(bn, n− 1)
5: {V ∗

n−1,b
∗
n−1} ← SOLVENLP(bn−1)

6: if V ∗
n−1 ≤ V ∗

n then
7: return b∗

n−1

8: bn+1 ← RESIZE(bn, n+ 1)
9: {V ∗

n+1,b
∗
n+1} ← SOLVENLP(bn+1)

10: if V ∗
n+1 < V ∗

n then
11: return b∗

n+1

12: if V ∗
n is non-feasible then

13: Repeat procedure with significantly larger n
14: return b∗

n

Hereby, bn denotes the current parameter vector
subject to optimization with n intervals: bn =
[sᵀ0 ,u

ᵀ
0 ,∆T0, s

ᵀ
1 ,u

ᵀ
1 ,∆T1, . . . , s

ᵀ
n−1,u

ᵀ
n−1,∆Tn−1, s

ᵀ
n]ᵀ.

Function SOLVENLP(bn) solves (6) with bn as initial
solution and RESIZE(bn,nnew) adjusts the length of the
parameter vector bn by insertion or removal of parameters.
A new tuple of time interval and control is inserted in
between interval max{∆Tk|∀k}. Shooting node and time
interval are interpolated with first-order hold and controls
with zero-order hold. In order to identify the minimum
number of interventions n∗ the procedure is invoked
repeatedly up to convergence of n. Note, the non-feasibility
check in line 12 does not trigger in case the initial length
n along with the initial solution bn are already feasible, in
particular, if n ≥ ncrit − 1. Otherwise a linear (n = n + 1)



or more advanced search technique is invoked that increases
n adequately.

Note, if n does not reflect full discretization of the system,
Theorem 1 does not hold anymore such that the minimal cost
of (5) and (6) are not necessarily identical. Simulations and
experiments in Section III indicate that the dynamic grid is
superior compared to a uniform grid w.r.t. optimality and
grid resolution.

C. Closed-Loop Control

This section describes the integration of the previously
defined open-loop optimization with state feedback in order
to regulate system (1) to the final target state xf . The
resulting control scheme mimics a shrinking horizon problem
since the target state is included from the very beginning. At
each sampling interval the algorithm operates according to:

1: procedure FEEDBACKCONTROLSTEP(bn,xs,xf )
2: Initialize or update trajectory
3: b∗

ñ ← MULTISTAGESTEP(bn)
4: return {u∗

0,bñ} . u∗
0 is the first control in b∗

ñ

The current plant state xs for optimization is either directly
measurable or estimated by a state observer. bn denotes
the parameter vector fed back from the previous sampling
interval. The start solution is given by a linear interpolation
xk = xs + kn−1(xf − xs) between the start and final state
with zero controls uk = 0.

In line 2 the initial or previous parameter vector is updated
by replacing s0 and sn by the most recent states xs and
xf respectively. Furthermore, if ∆T0 from the initialization
already expired, it is erased together with its related shooting
node and control in order to seed the optimizer with a more
appropriate warm-start. Afterward procedure MULTISTAGE-
STEP(bn) returns the optimized trajectories with length ñ.
From that the imminent control action u∗

0 is applied as input
to the plant.

Remark 3: Limiting the degrees of freedom in the control
sequence is a common technique to reduce the computational
burden (Move-Blocking MPC). At the same time, it leads to
a reduced feasible set for the solution and usually suboptimal
regulations. By utilizing the minimum control representation,
our approach preserves optimality and feasibility. Hereby, the
advantages emerge particularly for control tasks with bang
bang characteristics since only a few control interventions are
required. Apparently, MULTISTAGESTEP(·) usually demands
up to three solutions of (6) and it is indeed questionable
whether this computational overhead is preferred over a
single solution with a fine uniform grid. However, in a multi-
threaded system, all stages consisting of resizing and solving
each are invoked independently and in parallel. Alternatively,
n∗ might be determined prior to control. Ongoing research
addresses the direct adjustment of the control input sequence
respectively time intervals based on the identification and
elimination of redundant control inputs at once. In this case
solving multiple NLPs in each step becomes obsolete.

Stability properties in the context of MPC are summarized
in [20]. This approach focuses on point-to-point transitions

towards a fixed final state. In practice, time-optimal control-
lers are not favored for stabilizing control, such that in the
vicinity of the target state the MPC (softly) switches to a
conventional quadratic cost function. However, convergence
to the final state must be preserved. Open-loop solutions with
final state constraints (sn = xf ) as in (6) are shown to
be stable in absence of disturbances and model mismatch if
the very first solution is already feasible [20]. In that case,
the above algorithm always maintains an already feasible
solution. Note, in case of disturbances new samples might
be inserted to retain feasibility.

III. EVALUATION AND EXPERIMENTS

This section analyzes the time-optimal control approach
on two simulated nonlinear control problems. The feasibility
is validated in experiment for position control of an industrial
servo drive.

The underlying optimal control problem (6) is solved with
IPOPT [21]. IPOPT implements the interior point method
for sparse nonlinear programs, supports warm starts and is
written in C++. Alternatively, a (sparse) active-set solver
might be utilized to exploit the bang-bang property for warm
starting active constraints. For IPOPT, the sparse linear solver
HSL-MA57 [22] is targeted for small and medium-sized
problems. The solver depends on Jacobian matrices for the
objective function and constraints as well as the Hessian
of the Lagrangian. For the evaluation, IPOPT is fed with
numerically calculated Jacobian and Hessian matrices to
avoid convergence effects that tend to emerge in iterative
BFGS methods [19]. To take advantage of the sparsity struc-
ture for calculating the Jacobians and Hessian, the complete
nonlinear program is represented as a (hyper-)graph which
vertices denote optimization parameters in bn and which
edges denote the equality and inequality constraints as well
as the summands of the objective functions. Dense block
Jacobian and Hessian submatrices are computed edge-wise,
and finally all submatrices are combined into the overall
sparse Jacobian resp. Hessian matrices. Computations are
performed in C++ (PC: 3,4 GHz Intel i7 CPU, Ubuntu).

A. Free-Space Rocket System

This section investigates time-optimal control of the free-
space rocket system that constitutes a common benchmark
in the MPC literature. Rocket motion and mass are given by:

ṡ(t) = v(t),

v̇(t) = (u(t)− 0.02v(t)2)/m(t),

ṁ(t) = −0.01u(t)2

(7)

in which the state s(t) denotes the distance traveled. The
rocket’s velocity v(t) is bounded to −0.5 ≤ v(t) ≤ 1.7. The
mass m(t) is bounded from below m(t) ≥ 0. Variable u(t)
denotes the control input and is limited to −1 ≤ u(t) ≤ 1.
The state space model f(·) refers to the state vector x(t) =
[s, v,m]ᵀ. The inequality constraints are g(sk, uk) = [u +
1,−u+1, v+0.5,−v+1.7,m]ᵀ ≥ 0. Note, Assumption (1)
is satisfied. Whenever the velocity bound is active between
two consecutive shooting nodes the constrained v̇ = 0 is
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Fig. 1. Open-loop control of the free-space rocket system

imposed which is accomplished by uk = 0.02·1.72 = 0.0578
in case of the upper bound. This particular uk is feasible
which applies to the other state bounds as well. The control
task is to transit from the initial state xs = [0, 0, 1]ᵀ to the
target state xf = [10, 0, ·]ᵀ in minimum time. As the final
mass mf is a priori unknown the final state m is subject to
optimization. System (7) is integrated with forward Euler and
a step width of 0.1s. Figure 1 depicts the resulting state and
control input trajectories for different controllers. In this case,
the analytical time-optimal control sequence consists of bang
and singular arcs. As a reference, the approach presented
in [16] with a uniform grid and a single temporal variable
subject to optimization are taken into account. To accomplish
a comparable resolution, n = 76 states are required to
maintain a step width of ∆T = 0.1s (full discretization).
A uniform grid with fewer states sacrifices upon global
optimality (refer to the uniform grid with n = 4). In contrast,
the dynamic grid approach perfectly coincides with the time-
optimal reference control sequence with n∗ = 4 states
and hence three control interventions only. The solution
with ncrit = 3 is also presented and constitutes a feasible
albeit suboptimal solution. Table I reports the corresponding
computations times.

TABLE I
COMPUTATION TIME OF ROCKET SYSTEM OPEN-LOOP CONTROL

Dynamic grid n = 4 Uniform grid n = 4 Uniform grid n = 76

(17.2± 0.3)ms (17.7± 0.5)ms (66.4± 1.7)ms

B. Van-der-Pol Oscillator

The Van-der-Pol oscillator constitutes an oscillatory dy-
namic system with nonlinear damping. The system dyna-
mics equation ẍ(t) + (x2(t) − 1)ẋ(t) + x(t) = u(t) is
transformed into a state-space model with the state vector
x = [x(t), ẋ(t)]ᵀ:

ẋ = f(x, u) = [ẋ, −(x2 − 1)ẋ− x+ u]ᵀ. (8)
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Fig. 2. Open-loop control of the Van-der-Pol Oscillator

The control input u(t) is bounded by −1 ≤ u(t) ≤ 1 and the
second state is restricted to −0.8 ≤ ẋ(t) ≤ 0.8. Inequality
g(·) is obtained according to the procedure in Section III-A.

The control task demands the transition from an initial
state xs = [0, 0]ᵀ to the target state xf = [1, 0]ᵀ in minimum
time. Numerical integration is applied as in section III-A.
By adding the state constraint, the second state equation
indicates that −x(t)+u(t) = 0 must hold for an active bound
with ẋ(t) = 0. Hence, the corresponding control input does
not resemble a constant bang or singular arc but rather a li-
near function dependent of x(t). Furthermore, Assumption 1
might become invalid. In the following, for each interval
∆Tk 10 intermediate state constraints for g(·) are added
according to Remark 1. Figure 2 shows the resulting state and
control trajectories. The reference approach (uniform grid)
with n = 20 samples exhibits the linear arc in the control
sequence for the active state bound. For the dynamic grid,
procedure MULTISTAGESTEP is invoked repeatedly with
initially n = 20 states and eventually converges to n = 5.
The corresponding input state trajectory merely approximates
the linear reference segment and the corresponding state
trajectory ẋ(t) is slightly curved. However, the transition
time for the dynamic grid solution is 1.8093 s whereas the
uniform grid achieves 1.8087 s. The small discrepancy is
likely attributed to numerical inaccuracies. The figure also
illustrates the suboptimal solution for a dynamic grid with
n = 3.

C. Closed-Loop Control Experiment

This section investigates closed-loop position control of an
ECP Industrial Plant Emulator Model 220 (see Figure 3).
The system consists of two load plates actuated by servo
drives which motion is coupled by transmission belts. Drive
angles are measured with encoders and the angular velocity
is estimated from encoder signals with a DSP.

Fig. 3. ECP Industrial Plant Emulator Model 220
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In the experimental setup, one plate is the actuator drive
which provides a torque via the elastic transmission belt to
the second plate which position and velocity are supposed
to be regulated by the time optimal controller. The system
equation with nonlinear damping is given by:

ẍ(t) = 4ku(t)/J −
(
Fc tanh(αẋ(t) + dẋ(t)

)
/J (9)

with k = 9.5 · 10−2, J = 3.39 · 10−2, Fc = 9.39 · 10−2, α =
5.37 and d = 1.93 · 10−2. The state space model is derived
similar to section III-B with state vector x(t) = [x(t), ẋ(t)]ᵀ.
Furthermore, the control input denotes the current of the
actuator drive and is limited to |u(t)| ≤ 1 while the velocity
is bounded to |ẋ(t)| ≤ 5. Note, that the simplified dynamic
equations exhibit a non-trivial model mismatch w.r.t. to the
true coupled drive dynamics. For the closed-loop control
experiment, the reference signal commands four target posi-
tions at standstill as shown in Figure 4. The controller is only
aware of the current target position (marked with dashed lines
as reference) and does not look-ahead beyond the single step
reference. Procedure MULTISTAGESTEP converges to n = 4
states and hence three control interventions. To accomplish
a sampling rate of 200 Hz closed-loop control is performed
with the n = 4 solution (according to Remark 3). Numerical
integration is performed with 5th-order Runge-Kutta with a
step width of 0.1 s. The resulting state and control trajectories
are depicted in Figure 4.

IV. CONCLUSIONS AND FUTURE WORK

The time-optimal optimal control formulation with a dy-
namic grid achieves time-optimality with minimum burden
on the computational resources for two nonlinear systems.
In comparison to previous approaches with a uniform grid
and a finer discretization, the proposed approach is able to
determine the time-optimal control sequence with only a
small subset of the parameters. This reduction in problem
dimension is especially beneficial for time-optimal control
with bang and singular arcs. A multi-stage optimization auto-
matically determines the minimum degrees of freedom either
at runtime or a-priori to closed-loop control for slower single-
threaded implementations. A closed-loop control example is
presented for an experimental test bed that demonstrates the

ability to transit the servo drive to different target positions
at a sampling rate of 200 Hz.

Future work addresses the development of single-stage
optimization algorithms for dynamic-grid based time-optimal
MPC as well as its application to hybrid objective functions.
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linear model predictive control of robots using real-time optimization,”
in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2004.

[11] D. Lam, “A model predictive approach to optimal path-following and
contouring control,” PhD Thesis, The University of Melbourne, 2012.

[12] D. P. Kelly and R. S. Sharp, “Time-optimal control of the race
car: a numerical method to emulate the ideal driver,” Vehicle System
Dynamics, vol. 48, no. 12, pp. 1461–1474, 2010.

[13] J. P. Timings and D. J. Cole, “Minimum manoeuvre time of a nonlinear
vehicle at constant forward speed using convex optimisation,” in
International Symposium on Advanced Vehicle Control, 2010.

[14] R. Verschueren, N. van Duijkeren, J. Swevers, and M. Diehl, “Time-
optimal motion planning for n-dof robot manipulators using a path-
parametric system reformulation,” in Proceedings of the American
Control Conference (ACC), 2016.

[15] L. Van den Broeck, M. Diehl, and J. Swevers, “A model predictive
control approach for time optimal point-to-point motion control,”
Mechatronics, vol. 21, no. 7, pp. 1203–1212, 2011.
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