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Abstract— This paper addresses the safe and legible nav-
igation of mobile robots in multi-agent encounters. A novel
motion model provides the basis to predict, plan and coordi-
nate agent trajectories in intersection scenarios. The approach
establishes an implicit, non-overt cooperation between the
robot and humans by linking the prediction and planning of
agent trajectories within a unified representation in terms of
timed elastic bands. The planning process maintains multiple
topological alternatives to resolve the encounter in a manner
compliant with the implicit rules and objectives of human
proxemics. The trajectory is obtained by optimizing the timed
elastic band considering multiple conflicting objectives such
as fastest path and minimal spatial separation among agents
but also global proxemic aspects such as motion coherence
within a group. Cooperation is achieved by coupling predicted
and planned agent trajectories to eventually reach an implicit
agreement of the agents on how to circumnavigate each other.
The parameters of the cost functions of the underlying motion
model are identified by inverse optimal control from a dataset
of 73 recorded encounters with up to five humans and a total
of 283 individual trajectories. Playback simulations of recorded
encounters and experiments with a robot traversing a group of
oncoming humans demonstrate the feasibility of the approach
to resolve general proxemic encounters.

I. INTRODUCTION

Mobile service robots provide communicative and in-
formal services at public places, e.g. in museums, malls
or fairs. In this context a legible and coherent proxemic
interaction between humans and robots is a key factor for
their consumer acceptance. Service robots are supposed to
navigate in crowded environments in a way that is compliant
with human proxemics. Such a proxemic perspective requires
concepts that extend beyond the established methods for
motion planning and mere obstacle avoidance.

This paper investigates proxemic aspects in the spatial
interaction between humans and mobile robots. Proxemics
investigates the mechanisms by which a human determines
his pose and posture towards an interaction partner or its
environment. Our research objective is to incorporate these
proxemic aspects into the trajectory planning of mobile
robots in indoor environments. Even though proxemics in
general rests upon a multitude of cues such as pose, posture,
gaze and gestures, we hypothesize that the overt motion is a
sufficient cue to negotiate the traversal of agents in confined
spaces. The conception and implementation of legible mo-
bile robot proxemic behaviors involves the following steps:
(i) recording of human proxemic encounter trajectory data
with a visual tracker, (ii) online trajectory prediction and
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planning with timed elastic bands (TEB), (iii) incorporation
of proxemic objectives in the cost function and (iv) iden-
tification of the cost function parameters in the underlying
motion model from recorded human-human encounters by
means of inverse optimal control.

To find a safe and collision-free way through dynamic
and dense crowds in real-time is a challenge known as
the freezing-robot-problem (FRP) [1] in the literature. The
uncertainty inherent to opponents future trajectories prevents
a solution by classical global, offline motion planners [2]. In
order to cope with dynamic scenarios elastic bands modify an
initial global plan locally [3]. The extension to TEBs deforms
trajectories rather than paths and thus unifies online motion
planning and control [4]. The TEB planner is available online
for the Robot Operating System (ROS).

Trautman [5] provides an approach that solves the FRP in
a probabilistic framework. The author shows that an explicit
agent cooperation is key to solving the FRP in case of
group encounters. Gaussian-processes are adapted towards
demonstrations in order to model human motion patterns.
Sampled trajectories are evaluated by an interaction potential
to incorporate spatial-temporal interactions among agents.

Human motion models for social robots are developed [6]–
[8]. Proxemic aspects in lateral passing scenarios between
humans and robots are considered in [9], [10]. [11] addresses
similar scenarios using dynamic motion prototypes which are
learned from human demonstrations.

A simulation-based motion model suited for pedestrian
encounters is presented in [12]. The multi-hypothesis ap-
proach rests upon a deterministic energy minimization in
terms of the predicted minimal distance between two agents.
It considers multiple trajectories of alternative topologies.
A sampling based approach for multi-robot collision avoid-
ance is provided in [13]. Van den Berg et al. [14] extend
velocity obstacles to support reciprocal collision avoidance.
Kretzschmar et al. [15] introduce feature-based probabilistic
models for multi-agent encounters. The human intention and
objectives are captured by features such as time, acceleration,
velocity and collision-avoidance. Spline-based trajectories
are optimized with respect to alternative topological variants.
Maximum entropy learning is applied to adapt the model to
human demonstrations. The main difference to our contri-
bution is the explicit coordination of topological variants,
whereas our approach rests upon an implicit coordination
in which human intentions are indirectly inferred from the
perceived motion. Another feature-based method by [16]
models the pedestrians spatial behavior as a Markov Decision
Process. Inverse reinforcement learning is applied to estimate
underlying feature weights.



II. LOCAL TRAJECTORY OPTIMIZATION

A. Constrained Optimization Problem
The TEB approach presented in [4], [17] optimizes tra-

jectories by subsequent modification of an initial trajec-
tory generated by a global planner. A trajectory B =⋃n
k=1{sk,∆Tk} \ {∆Tn} is represented by an ordered se-

quence of n poses augmented with n − 1 time intervals.
sk = [xk, yk, βk]ᵀ ∈ R2 × S1 denotes the pose of the robot
at time stamp k and ∆Tk ∈ R+ represents the time interval
associated with the transition between consecutive poses sk
and sk+1. The time-optimal trajectory B∗ is obtained by
solving the nonlinear program (NLP):

min
B

n−1∑
k=1

∆T 2
k (NLP)

subject to:
s1 = ss, sn = sf , 0 ≤ ∆Tk ≤ ∆Tmax,

hk(sk+1, sk) = 0, (Non-holonomic kinematics)

ok(sk) ≥ 0, (Clearance from obstacles)

νk(sk+1, sk,∆Tk) ≥ 0, (Velocity limits)

αk(sk+1, sk, sk−1,∆Tk+1,∆Tk) ≥ 0. (Acceleration limits)

Initial and final poses, s1 and sn, are tied with the current
robot pose ss obtained from robot localization and goal pose
sf respectively. ∆Tmax provides an upper bound on ∆Tk
in order to accomplish an appropriate discretization of the
continuous time motion. Equality and inequality equations
restrict the feasible set w.r.t. environmental and robotic con-
straints such as non-holonomic kinematics, clearance from
obstacles and bounds on velocities and accelerations. A
detailed discussion of the constraints is beyond the scope
of this paper, the interested reader is referred to [17].
Note, customized constraints might be added to (NLP) for
particular robots and applications.

B. Approximative Least-Squares Optimization
Instead of solving (NLP) directly, it is mapped into

an unconstrained least-squares optimization problem with
constraints approximation. Consequently, efficient nonlinear
least-squares solvers which approximate the Hessian by first
order derivatives and exploit the sparsity pattern of the
problem are utilized [17]. In the following the arguments
of constraints are omitted for the sake of readability. The
approximated optimization problem is defined by:

B∗ = arg min
B\{s1,sn}

V (B) (1)

V (B) =

n−1∑
k=1

[
∆T 2

k + σh‖hk‖22 + σν‖min{0,νk}‖22 + . . .

+ σo‖min{0,ok}‖22 + σα‖22 min{0,αk}‖22
]

= wᵀf(B)

Constraints of (NLP) are expressed in terms of quadratic
penalties with weights σ. For inequalities respectively one-
sided penalty terms the min-operator applies row-wise. Con-
straints for ss and sf are eliminated by substitution and are

therefore not subject to the optimization. For the remain-
der, cost function V (B) is expressed in terms of the dot
product, in which w captures individual weights and f(B)
contains individual cost terms. The optimization problem (1)
is efficiently solved with a sparse variant of the Levenberg-
Marquardt (LM) Algorithm [17].

Note, optimization is integrated with state feedback to
repeatedly refine the previous solution and in order to react
on new way-points of the global plan, dynamic environments
and disturbances. The resulting predictive control strategy
mimics a receding horizon until the global goal is reached.
In each online invocation of the optimization procedure the
number of poses n is increased or decreased by comparing
current time intervals ∆Tk with a desired ∆Tref. Hence
allowing the decoupling of remaining path length and overall
transition time while retaining the imposed temporal dis-
cretization [17].

III. IMPLICITLY COORDINATED MOTION MODEL

In [17] the TEB is extended to the exploration and
optimization of multiple candidate trajectories with quasi-
static obstacles. This approach is further extended to pre-
dict and incorporate dynamic motions of other agents. The
prediction of other agents future trajectories is essential to
achieve a truly proxemic behavior. The implicitly coordinated
motion model (ICMM) captures proxemic aspects of spatial-
temporal interaction and thus provides the basis to predict
the agents trajectories as well as to plan the robots own
motion. The most likely resolution of a proxemic encounter
is identified in three stages. First, a set of topological
alternatives are identified from that plausible solutions are se-
lected. Second, locally optimal trajectories for all alternative
topologies are planned in parallel by the TEB optimization.
Finally, the least-cost trajectory is selected. Parallel planning
is performed for all agents. In the case of humans the selected
trajectory provides a prediction. In case of the robot the first
translational and rotational velocity of the selected trajectory
are commanded according to the predictive control strategy.
Assuming that the agents act in a cooperative manner,
the trajectories mutually effect each other until the agents
implicitly achieve a common resolution.

A. Exploration and Optimization in Distinctive Topologies

Encounters with multiple agents allow alternative topo-
logical trajectories in which the individuals pass each other
either to the left or right. The intentions of agents reveal
themselves by their overt motion upon approach. For solv-
ing (1) efficiently during runtime, local optimization schemes
(such as LM) are utilized. Therefore, the local solution
depends on the initialization and the optimizer is unable
to transit to a different local optimal trajectory with agents
passing on the opposite side.

In order to distinguish whether two paths resp. trajec-
tory belong to the same topology, an equivalence relation
(invariant) based on the concept of complex analysis is
borrowed from [18]. The invariant H(τ) =

∫
τ
F(z) dz with

z = x + iy ∈ C of a path τ is denoted as H-signature
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Fig. 1. Exploration graph (a) and parallel planning of TEBs (b)

and is equal for trajectories of the same topology. The
integrand F depends on the location of obstacles in the
plane. In the following obstacles are modeled by connected
domains O1,O2, . . . ,ON . For each obstacle, ξl ∈ Ol,∀l =
1, 2, . . . , N , denotes a representative point in a complex
representation. Given an arbitrary analytic function f0 over
C, the obstacle marker function F is defined by:

F(z) =
f0(z)

(z − ξ1)(z − ξ2) · · · (z − ξN )
(2)

Established f0 terms and the analytic solution of the H-
signature for discrete trajectories like B are provided in [17].

Agents might pass each other either to the left or right. For
each agent an exploration graph is generated by considering
all permutations of pairwise left and right passings (see
Fig. 1(a)). Let ss denote the current pose of an agent and sf
its designated goal pose. ξl represents the pose of the l-th
interacting agent. Initial collision free paths of alternative
topologies are generated only considering the agents that
constitute possible obstacles for a path that connects ss and
sf : (i) For each agent add a pair of nodes ζi to the left
and right side to the graph. (ii) Connect nodes by forward-
directed edges which orientation is sufficiently similar (here:
∆θ ≤ π/4) to the straight line from ss and sf . (iii) Extract
all primitive paths from the resulting acyclic graph using
depths-first search (DFS).(iv) Calculate the H-signature for
each path and remove redundant paths that possess the same
H-signature.

Start Goal

(a)

Start Goal

(b)
Fig. 2. Exploration example with four agents between start and goal,
(a) feasible paths, (b) paths after homotopy filtering and TEB optimization.

The exploration stage generates M initial candidate paths
that belong to alternative topologies. Those are converted
into TEBs by distributing initial poses uniformly along the
path. The TEBs are optimized in parallel (see Fig. 1(b))
with respect to the cost function in (1). In order to select
a proper TEB for an agent in the current sampling interval,
the original cost of (1) is augmented by criteria that capture
the global proxemic aspects of the entire encounter (only for
selection, not optimization) namely
• Spatial-temporal integrity of agents that move in a

group: A penalty is imposed for trajectories that pen-

etrate a group. Permanent groups are detected by a
modified DBSCAN [19] which clusters agents in time
and space according to their coherent motion.

• Right versus left bias: In case of right left symmetric
trajectories of otherwise equal costs this offset induces
a bias, for example to prefer right hand traffic.

• Initial curvature: Trajectories which deviate less from
the straight line to the goal are preferred. The curvature
of the TEB along the first H nodes is computed from the
absolute change of orientation 1/H

∑H
i=i |βi+1 − βi|.

The traditional and proxemic objectives are expressed by an
augmented cost function Vc(B) = wᵀ

c fc(B) and the optimal
compromise solution is determined by their relative weights
wc. The best TEB B̂∗ is obtained by solving:

B̂∗ = arg min
B∗

p∈{B∗
1 ,B∗

2 ,...,B∗
M}
Vc(B∗p) (3)

It is impossible to quantify the weights w and wc in advance
as the relationship between a desired proxemic behavior
and the weights is nontransparent. Instead the weights are
identified by learning from demonstration in section IV, such
that the optimal solutions (3) coincide with the trajectories
recorded in human encounters.

Fig. 2 shows an example of the exploration with four
additional agents. The initial DFS generates 52 paths that
are compliant with the forward condition. From this set
only twelve topological different paths remain after filter-
ing redundant solutions according to the H-signature (see
Fig. 2(b)). The computation of the graph requires less than
1 ms on a common desktop computer and the optimization of
each trajectory approx. 5−10 ms (single-threaded). Note, this
exploration strategy assumes relatively small agent footprints
which is usually fulfilled for humans. For larger shapes a
sampling based strategy from [17] might be adapted.

The ongoing motion of agents requires an update of the
TEBs and their H-signatures, the elimination of obsolete
TEBs or an instantiation of novel TEBs. Thus, the explo-
ration stage (see Fig. 1(b)) is extended to: (i) verify TEBs
for compliance with the forward condition (ii) discard non-
compliant obsolete TEBs (iii) the initial and final nodes
of the TEBs are updated with the agents current start and
goal pose (iv) redundant TEBs with identical H-signatures
are removed (v) novel TEBs are instantiated for homotopy
classes that are not covered by the current set of TEBs
(vi) optimize the TEBs according to (1).

B. Cooperative Planning

The above TEB framework enables an agent to plan
his trajectory under the assumption that the trajectories
of the interacting agents are known. There is no explicit
communication among agents, but they indirectly signal their
intentions as they yield to either side. This signaling triggers
a mirrored movement of the partner agent, which eventually
leads to an implicit mutual agreement. The whole encounter
is resolved by coupling the agents predicted trajectories.
Notice the correlation between an agents decision and his
prediction B̂∗l of the movement of other agents. Fig. 3 shows
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Fig. 3. Planning parallel TEBs in dynamic environments

the overall scheme of the implicitly coordinated motion
planner. The set of agents is denoted by A. A subscript
index for each agent is added to start pose, final pose and
trajectories respectively. Each agent maintains its own subset
of feasible trajectories in alternative topologies from which it
selects the TEB of least proxemic cost (see Fig. 1(b)). From
the predicted trajectories of each agent pair an interaction
point (IP) is computed from the two corresponding nodes of
minimal spatial-temporal separation among both trajectories.
Each agent temporarily considers his IPs with other agents
as static obstacles OIP in its current local TEB optimization.
Upon recomputation of IPs an agent refines its current
preferred TEB. An alternative topology might become more
desirable in case of a substantial change in IP locations.
Switching to an topologically alternative trajectory might
cause other agents to shift their path. It turns out, that in
practice such a cascade of shifts in the agents topology ebbs
away within one to three iterations. Upon the synchronization
of agent trajectories in Fig. 3 the start and goal poses of
the TEBs are updated according to observed motion of the
agents. As the TEB approach is an online planner novel
observations are immediately incorporated to refine the TEB.

The ICMM enables robot motion planning and control by
considering the robot as just another agent with the same
underlying proxemic motion model estimated from human
demonstrations. Rather than to predict the robots TEB plans
the robots trajectory. The robot motion model might differ in
terms of dynamic and kinematic constraints of the platform.
In our case the maximum robots translational velocity of
about 0.8 m/s is lower than the typical human walking speed
of ≈ 1.5 m/s. The ICMM assumes a goal pose for each agent,
which in our case is predicted by a modified version of virtual
goals presented in [20]. With a constant horizon of planning
the goal is assumed 5 m ahead of the agent with the heading
determined by the initial direction of agent motion averaged
over the first few steps. The goal heading is redefined in case
the agents current heading deviates by more than δθ = π/3
from the original goal heading.

IV. LEARNING FROM DEMONSTRATION

As it is nearly impossible to quantify the weights wc in
the cost function in (3) its underlying parameters are learned
from recorded trajectories in encounters of humans in groups.
For that purpose people in an indoor room are tracked by a
birds eye view camera. The subjects wear colored t-shirts
to facilitate their segmentation and registration in the birds
eye view. The camera is calibrated such that the location
of people in the image is mapped to their planar 2D pose
in the room. The raw trajectories are filtered and smoothed

by fitting them to B-splines. The recorded dataset includes
73 demonstrations of encounters with up to five interact-
ing agents with a total of 283 individual trajectories. The
particular encounters included head on as well as diagonal
trajectories of two groups with 2 vs. 1, 3 vs. 1, 2 vs. 2, 3 vs.
2 agents. The duration of scenarios varied between 5− 10 s
during which the subjects covered distances between 6−9 m.

The parameter identification includes the parameters of
the local costs functions, e.g. comfortable spatial separation,
as well as the global aspects such as group integrity. The
TEB cost function in (1) contains the individual objective
functions and constraints. (i) The minimal spatial separa-
tion of two agents at the closest encounter is obtained by
averaging over the separation observed in the 73 scenarios.
(ii) The maximum translational velocity of human agents is
set to the average velocity across all demonstrations. (iii) The
maximum rotational velocities and acceleration bounds are
set to the average of maximum values in each trajectory.

The weights w∗ that determine the relative importance
of conflicting objectives are identified by a subgradient
optimization technique [21], such that the optimal trajectories
according to the model coincide with the actual recorded
trajectories. The optimal weights are those which minimize
the discrepancy in cost function between the demonstrated
and planned trajectory. Assuming, that the optimal TEB
trajectory constitutes the global optimum of (1), the learning
problem is embedded into a superior optimization problem:

w∗ = arg min
w∈R+

1

D

D∑
d=1

[
wᵀf(B̆d)−min

B
wT f(B)

]
︸ ︷︷ ︸

C(w)

(4)

in which B̆d denotes the d = 1, 2, . . . , D demonstrated
trajectories. The last term of (4) constitutes the optimum of
the forward optimization (1). According to the maximum-
margin-principle, (4) is augmented by a margin and a regu-
larization term (refer to [21]). Due to the min-operator (4) is
non-differentiable such that standard optimization techniques
are not applicable. However, [22] proves that the subgradient
method is able to solve convex optimization problems. The
subgradient of C(w) in (4) is obtained by

∂wC(w) =
1

D

D∑
d=1

[
f(B̆d)− f(B∗)

]
(5)

The superior optimization problem (4) is solved by subgra-
dient descent:

wj+1 = wj − αb · ∂wjC(wj) (6)

αb denotes the constant step size for each update.
The learning stage identifies weights of the proxemic terms

(group penetration, left/right offset and curvature) in (3) for
selecting the best trajectory. The topologies of trajectories
B∗1 ,B∗2 , . . . ,B∗M are matched with the demonstration by
comparing their H-signatures. The trajectory that matches
the demonstrations topology is denoted by B̆∗. For learning,
three types of events are defined at which H-signatures are



matched with the demonstration and the cost function (3) is
evaluated: i) initial solution after the first iteration, ii) switch-
ing of the preferred topology in (3), iii) critical time-to-
collision (the analysis of the recorded encounters indicates
that humans signal their intend by altering their overt heading
at approximated 1.4 s prior to the closest approach).

For d = 1, 2, . . . , D demonstrations with Ed events each,
let I denote the set of indices of all recorded trajectories. The
superior parameter optimization problem for (3) is given by:

Cc(wc) =
1

NDE

∑
i∈I

[
wT
c fc(B̆∗i )−min

B∗
b,i

wᵀ
c fc(B∗b,i)

]
w∗c = arg min

wc∈R
Cc(wc) (7)

with B∗b,i ∈ {B∗1,i,B∗2,i, . . . ,B∗M,i} as candidates in alterna-
tive topologies. NDE denotes the number of elements in I.

The structure of the parameter identification problem (7)
is similar to (4), with the difference that the min-operator
selects among a discrete rather than quasi-continuous set of
alternative trajectories. The solution is obtained by subgra-
dient optimization with a subgradient of (7) defined by:

∂wc
Cc(wc) =

1

NDE

∑
i∈I

[
fc(B̆∗i )− fc(B̂i

∗
)
]

(8)

Hereby, B̂i
∗

minimizes wᵀ
c fc(B∗b,i). For a constant step size

αc, the subgradient descent update rule is given by:

wc,j+1 = wc,j − αc · ∂wc,j
Cc(wc,j) (9)

V. EXPERIMENTAL RESULTS

This section investigates the learning of parameters of the
proxemics motion model acquired from recorded demonstra-
tions and analyzes simulated playbacks of actual encounters
as well as closed loop experiments of a mobile robot (Pioneer
3DX) traversing groups of humans.

Fig. 4 shows the progress of the average trajectory error
δ̄Tr(wb,j), in terms of the mean distance between demon-
strated and learned trajectory w.r.t. the iterations of subgra-
dient descent. δ̄Tr(wb,j) converges after approximately 15
iterations with a mean trajectory error of about 38.2 cm.

Fig. 5 shows the same evolution in terms of the classifi-
cation rate of the correct homotopy class across all events.
The non-monotonic improvement in event recall is typical
for non-differentiable subgradient solutions. For the optimal
weights the selection error decreases to 0.7 %.

The analysis of the global proxemic parameters reveal a
preference of agents to pass each other at the right hand
side. The average separation at closest encounter between
two interaction partners is 0.64 m. According to proxemics
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[23], the social space extends to 1.20 m, whereas the dis-
tance of 0.64 m denotes a humans personal space. However,
these proxemic distances correspond to static and permanent
spatial configurations and the literature provides substantial
evidence that for transient configurations humans are com-
fortable with substantially smaller separations [11].

In the following playback simulations and experiments
on the basis of the ICMM are presented. In a playback
simulation, the previously recorded human trajectories are
fed back step by step into the ICMM, which then predicts the
agents future trajectories. The ICMM prediction is compared
with the future ground truth evolution of the encounter.

Fig. 6 shows the mean trajectory error and the standard
deviation of the predicted trajectories as a function of the
remaining time to closest approach. For comparison, the
mean trajectory error of the Social Forces approach (SF) [20]
and the Reciprocal Velocity Obstacles method (RVO) [24]
determined on the very same dataset are included. Parameters
for the minimum distance to other agents and the maximum
velocity are chosen according to ICMM. ICMM predictions
are slightly more precise for remaining times below 2.5 s.

Two snapshots of a 2 by 2 encounter are shown in Fig. 7.
Initially, the ICMM predicts that agents 1 and 2 jointly pass
agents 3 and 4 on their right side without penetrating their
grouping. A brief instance later both groups split up their for-
mation such that the resolution with shorter trajectories but
dissociation of the groups is preferred. The ICMM switches
the predicted homotopy class (see 7(b)). A conventional
motion planner does not consider the cooperation of the other
agents thus plans the safer detour to avoid the entire group.

1 m
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(a) Snapshot at t ≈ 0 s

1 m

1

2
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4

(b) Snapshot at t ≈ 1.6 s

Fig. 7. 2 by 2 encounter: Solid lines represent predicted trajectories, dashed
lines denote feasible alternative homotopy classes
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Fig. 8 illustrates a two by three encounter in which the
homotopy class of predicted trajectories matches the actual
resolution of the encounter fairly late. At time t = 0 s the
predicted trajectories maintain the integrity of agents 1 and
2 assuming a cooperation of agent 4 by passing the group to
his right. The dashed lines denote the actual trajectories in
which agent 4 continues along his original heading thereby
forcing agents 1 and 2 to split up. At time t = 1.9 s the
predicted and actual trajectories coincide.

In a total of 43 experiments the robot traversed a group of
humans without any collision. In the scenario in Fig. 9 the
robot approaches three agents, again the actual trajectories
are denoted by thin lines and predictions by thick lines.
The predicted homotopy class of the encounter is revoked
multiple times in response to the motion of agents 2 and 3.
Initially at time t = 2 s the robot plans to traverse through
the gap between agents 2 and 3 in Fig. 9(a). As agent 2 turns
to the left the ICMM switches to the resolution in Fig. 9(b).
Since the heading of agent 3 changes significantly its goal
pose is reset to the north in Fig. 9(c) assuming that he passes
the robot on his right side. In Fig. 9(c) the agent 3 turns once
more to the right such that the robot reverts to the original
plan which coincides with the actual outcome.
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Fig. 9. Scenario with a real mobile robot

VI. CONCLUSIONS

This paper presents a novel approach for robot motion
planning in crowds. The planning and prediction of trajec-
tories rest upon a proxemic motion model which underlying
cost functions are extracted from recorded human encounters.

The motion model captures proxemic aspects such as group
integrity and right versus left biases. Implicit cooperation of
agents is established by coupling planning and prediction in
a unified representation with timed elastic bands. The major
contribution is the ability to handle multiple topologically
alternative resolutions of the encounter. This property allows
the robot agent to adapt its plan in response to changes of
the movements and intentions of opponents. Resimulation of
recorded encounters and experiments with a robot demon-
strate the feasibility of the approach to model, predict and
plan trajectories in realistic proxemic encounters online.
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[17] C. Rösmann, et al., “Integrated online trajectory planning and opti-
mization in distinctive topologies”,” Robotics and Autonomous Sys-
tems”, vol. 88, pp. 142–153, 2017.

[18] S. Bhattacharya, et al., “Search-based path planning with homotopy
class constraints,” in National Conf. on Artificial Intelligence, 2010.

[19] M. Ester, et al., “A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise,” in Int. Conf. on Knowledge
Discovery and Data Mining. AAAI Press, 1996, pp. 226–231.

[20] M. Luber, et al., “People tracking with human motion predictions from
social forces,” in Int. Conf. on Robotics & Automation, USA, 2010.

[21] N. Ratliff, et al., “Maximum margin planning,” in Int. Conf. on
Machine Learning, Juli 2006.

[22] N. Shor, Minimization methods for non-differentiable functions, ser.
Springer series in computational mathematics. Springer-Verlag, 1985.

[23] E. T. Hall, “A system for the notation of proxemic behavior,” American
Anthropologist, vol. 65, no. 5, pp. 1003–1026, 1963.

[24] J. van den Berg, et al., “Reciprocal velocity obstacles for real-
time multi-agent navigation,” in IEEE Int. Conf. on Robotics and
Automation, May 2008, pp. 1928–1935.


