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Abstract— Model predictive control is a means to transit a
nonlinear dynamic system from its current towards a target
state subject to state and control constraints. A model-predictive
controller based on Timed-Elastic-Bands (TEB-MPC) is par-
ticular suitable for time-optimal control. This contribution
investigates the convergence behavior of the sparse TEB-MPC
approach on two non-trivial benchmark systems under limited
computational resources. It evaluates the trade-off between
accuracy of the approximate optimal solution and computa-
tional efficiency. An alternative formulation of the original
TEB-MPC with local transition intervals results in a higher
dimensional but albeit banded problem structure. Furthermore,
both formulations are compared for two different solvers,
an unconstrained least-squares optimization and a primary
nonlinear program. For low sampling times the former exhibits
a faster rate of convergence, however the later is already
superior for medium sample times. In practice, the selection of
TEB-MPC realizations depends on the order and complexity
of the dynamic systems contrasted with the computational
resources and demands on real-time control.

I. INTRODUCTION

Nonlinear model predictive control (MPC) constitutes an
advanced control concept for nonlinear system dynamics that
considers explicit constraints on control and state variables.
Model predictive controllers repeatedly solve a receding
horizon optimal control problem within each sampling in-
terval of the underlying feedback control [1]. Solving such
optimal control problems under constraints is computation-
ally demanding. In order to utilize MPC for mechatronic
systems with fast dynamics the interest in numerical efficient
realizations has grown considerably within the past decade.

A major improvement of efficiency and convergence be-
havior is achieved by the multiple shooting approach [2].
Continuous system dynamics are partitioned into discrete
time intervals, for which isolated initial value problems
are solved utilizing numerical integration techniques. The
calculus of variations is hereby approximated by a sparse
finite parameter nonlinear program. To further reduce the
computation time, Diehl et al. propose the real-time iter-
ation scheme, which subsequently refines an initial coarse
approximation at runtime [3]. The method is based on
multiple shooting and involves the computation of only a
single (sqp) iteration at each sampling interval. In order
to handle stiff systems, implicit integrators are preferred
over explicit ones. Recently, lifted integrators based on the
inexact newton method are applied to reduce the overall
computational cost [4]. D. Kouzoupis combines the real-time

The authors are with the Institute of Control Theory and Sys-
tems Engineering, Technische Universität Dortmund, D-44227, Germany,
christoph.roesmann@tu-dortmund.de

iteration scheme with different first-order methods in order
to analyze its application to embedded nonlinear MPC [5].
Other methods are based on inner-point-methods that exploit
the sparsity of the problem structure in order to allow a
numerically efficient computation [6], [7], [8]. Graichen et
al. present an efficient method based on projected gradients
within a real-time capable MPC scheme [9]. Efficient tailored
gradient methods are recently applied to systems governed
by partial differential equations [10]. The underlying optimal
control problem is transformed into an unconstrained one by
means of saturation functions. Other publications focus on
automatic code generation strategies that explicitly exploit
structure, e.g. in [11] or targeting embedded hardware [12].

In the context of time-optimal MPC, the above men-
tioned approaches are not generally applicable for real-
time applications. Zhao et al. propose an indirect solution
based on the calculus of variations to minimize the settling
time for quasi time-optimal control of a spherical robot.
Indirect methods strongly depend on the initial solution and
handling of inequality constraints is difficult in general. An
approach that follows a reference path in minimal time is
presented in [13]. Time-optimality is nearly achieved in
case of sufficiently large time horizons. In applications such
as race car automatic control, dedicated MPC methods are
utilized in order to minimize the total lap time [14], [15].
Van den Broeck et al. extend the general concept of MPC
to time-optimal point-to-point transitions [16]. The method
called TOMPC minimizes the settling time in a two layer
optimization routine. The outer loop incrementally reduces
the horizon of the control sequence until the inner loop
nonlinear program fails to generate a feasible solution within
the allocated time horizon. The runtime strongly depends
on a proper initial estimate of the settling time, as the
discrepancy w. r. t. the initial estimate determines the number
of iterations in the outer loop time horizon reduction.

Our previous work [17] introduces a novel approach to
time-optimal nonlinear MPC for point-to-point transitions.
The concept is based on Timed-Elastic-Bands (TEB) [18]
as a representation of the underlying optimization parameter
vector. In contrast to conventional MPC that operate either
in continuous time domain or in discrete time domain with a
fixed sample rate, the TEB explicitly incorporates the tempo-
ral resolution as a parameter of optimization. The continuous
system dynamics are approximated by finite differences. This
extension enables the efficient minimization of the overall
transition time as control and state sequence expand or
contract in time and space. A comparative analysis with a
state of the art approach and non-trivial benchmark systems
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demonstrates the ability to efficiently refine the planned
state and control sequence within the underlying closed-
loop control during runtime while converging towards the
analytical time-optimal trajectory. In the field of automotive
Götte et al. utilize a TEB based MPC approach for the
optimal guidance of automated vehicles [19].

The contribution of this paper is twofold. Primarily, two
different realizations and extensions of the original time-
optimal TEB-MPC problem conducted in [17] are provided
that exploit the sparse problem structure. Furthermore, the
resulting nonlinear programs are transformed to approx-
imate unconstrained formulations. A comparative conver-
gence analysis of the proposed realizations is performed on
two benchmark systems. Although the TEB-MPC approach
refines its trajectory during runtime, a fast convergence
of the underlying optimal control problem to a feasible
suboptimal trajectory is a prerequisite for its successful
application. In real world applications the computation time
of each feedback interval is either limited by the sampling
time or inherent time constants of the plant. Thus, this
analysis focuses on the quality of the open-loop solution
obtained during the first sampling interval while limiting
the computation time to a few milliseconds. Such sample
times are common in mechatronic systems. The order of the
systems and number of states are of small to medium sizes.
Unconstrained variants of TEB-MPC are included in the
convergence analysis using penalty functions. Unconstrained
optimization does not introduce dual variables thus leading
to a smaller problem size. On the other hand the obtained
solutions are suspectible w. r. t. weights of the penalty
functions. Whether to favor solving unconstrained variants
over solving the actual nonlinear programs is revealed by
the convergence analysis.

The next section summarizes the original TEB-MPC and
introduces an alternative formulation which leads to a mod-
ified sparsity pattern with band structure. In Section III both
TEB-MPC formulations are transformed into an approxima-
tive unconstrained optimization problem. Section IV presents
the comparative convergence analysis based on simulations
of two benchmark systems. Finally, section V summarizes
the results and provides an outlook on further work.

II. TIME-OPTIMAL MODEL PREDICTIVE CONTROL

An autonomous, nonlinear dynamic system with p states
and q inputs is defined by:

ẋ(t) = f(x(t),u(t)), x(t = 0) = xs (1)

in which x ∈ Rp denotes the time dependent state and
u ∈ Rq the corresponding control input. xs ∈ Rp denotes
the initial state at time t = 0 s. This work utilizes a time-
optimal MPC formulation for point-to-point transitions based
on Timed Elastic Bands (TEB) [17]. Here, the system of
differential equations is approximated by finite differences.
In contrast to the realization in [17], Crank-Nicolson differ-
ences are favored over forward differences to better account

for stiff systems:

ẋ(t) ≈ xk+1 − xk
∆Tk

= 0.5
(
f(xk,uk) + f(xk+1,uk)

)︸ ︷︷ ︸
f̃(xk,xk+1,uk)

(2)

The discretization with k = 0, 1, . . . , n − 1 introduces n
state vectors xk and n− 1 control vectors uk according to a
sequence of n−1 strictly positive time intervals ∆Tk ∈ R+.
Two different formulations of the TEB-MPC optimization
problem are presented in the following.

A. TEB-MPC Optimization Problem with Global ∆T

The original approach [17] defines a global, uniform
time interval ∆Tk = ∆T, ∀k = 1, 2, . . . , n − 1 between
consecutive states and controls. The state sequence, control
sequence and the global ∆T are combined into a single set
Bg ⊆ Rρ with ρ = np+ (n− 1)q + 1:

Bg := {x1,u1,x2,u2, . . . ,xn−1,un−1,xn,∆T} (3)

The control task involves the transition from the initial
state xs to a final target state xf in minimum time T . Since
the TEB-MPC explicitly incorporates the time interval ∆T
as part of the optimization, the transition time in terms of
the parameter set Bg is given by T ≈ (n − 1)∆T . The
optimal control sequence is obtained by solving the nonlinear
program consisting of the linear objective function Vg(Bg) =
(n − 1)∆T that is bounded from below due to a strictly
positive ∆T :

V ∗l (Bg) = min
Bg

(n− 1)∆T (TEBg)

subject to
x1 = xs, xn = xf , 0 < ∆T ≤ ∆Tmax

hk(xk+1,xk,uk,∆T ) = 0

gk(xk,uk) ≥ 0 (k = 1, 2, . . . , n− 1)

Initial and final states, x1 and xn, are clipped to the actual
start and goal state vector xs and xf respectively. System dy-
namics are incorporated by the following equality constraint:

hk(xk+1,xk,uk,∆T ) =
xk+1 − xk

∆Tk
−f̃(xk,xk+1,uk) (4)

States and controls are restricted by inequality constraints
gk : Rp×Rq → Rr. ∆Tmax denotes an upper bound on the
discretization width which is usually chosen to be compliant
with the sampling theorem.

Notice, in case of a fixed ∆T during optimization, the
finite difference approximation is easily transformed into
numerical integration and thus constitutes a multiple shooting
approach. However, in our experience performing numerical
integration with a non-fixed ∆T appears to result in a
less robust convergence. Additionally, the finite differences
formulation introduces an implicit barrier on ∆T forcing it
to be strictly positive since the difference quotient diverges
for ∆T → 0.
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B. TEB-MPC Optimization Problem with Local ∆Tk

A global ∆T shared among all state transitions introduces
a dense row and column in the Hessian matrix of the
optimization problem since the discrete system dynamics
of all states depend on the very same parameter ∆T . An
alternative structure is achieved by maintaining separate time
intervals ∆Tk that are local to each state. The sequences of
states, controls and time intervals are combined into a single
set Bl ⊆ R% with % = np+ (n− 1)(q + 1):

Bl := (5)
{x1,u1,∆T1,x2,u2,∆T2, . . . ,xn−1,un−1,∆Tn−1,xn}

The optimal control sequence is obtained by solving the
following nonlinear program:

V ∗g (Bl) = min
Bl

n−1∑
k=1

∆T 2
k (TEBl)

subject to
x1 = xs, xn = xf , 0 < ∆Tk ≤ ∆Tmax

hk(xk+1,xk,uk,∆Tk) = 0

gk(xk,uk) ≥ 0 (k = 1, 2, . . . , n− 1)

The original objective function Vg(Bg) is replaced by the
sum of squared time intervals. Notice, that the total transition
time is approximated by T ≈

∑n−1
i=0 ∆Tk. The resulting

nonlinear program is underconstrained as the total time T can
be partitioned in different ways into the individual summands
∆Tk. This ambiguity is resolved by (TEBl) as the squared
terms ∆T 2

k favor a uniform interval ∆T ∗k ≈ T
n .

C. Solving the TEB-MPC Optimization Problem

The solution of (TEBg) and (TEBl) is obtained by ap-
plying constrained optimization algorithms for which several
alternative numerical software packages are readily available.
The IPOPT software package employs interior point methods
[20], it is particular suitable for sparse nonlinear programs,
supports warm starts and is written in C++. The selected
sparse linear solver HSL-MA57 [21] is targeted for small
and medium sized problems. The solver depends on Jacobian
matrices for the objective function and constraints as well as
the Hessian of the Lagrangian. For the evaluation part IPOPT
is fed with numerically calculated Jacobian and Hessian
matrices to avoid convergence effects that tend to emerge
in iterative BFGS methods [22]. In order to take advantage
of the sparsity structure for calculating the Jacobians and
Hessian, the complete nonlinear program is represented as a
hyper-graph which vertices denote optimization parameters
in Bl resp. Bg and which edges denote the constraints hk,
gk as well as the summands of the objective functions. Each
edge depends only on a small subset of the entire set of TEB
parameters. Dense block Jacobian and Hessian submatrices
are computed numerically with finite differences by iterating
through all edges of the graph. Those submatrices of edges
that correspond to linear or quadratic terms are defined in
analytical form. Finally all submatrices are combined into
the overall sparse Jacobian resp. Hessian matrices.

D. Closed-Loop Control

Closed-loop control with TEB-MPC is described in [17].
The following algorithm details the basic approach:

1: procedure TEBMPC(B,xs,xf )
2: Initialize or update trajectory
3: for all Iterations 1 to Iteb do
4: Adjust length n of the trajectory
5: B∗ ← SOLVENLP(B) . (TEBg) or (TEBl)
6: Check feasibility

return (sub-) optimal B∗,u∗1
At the beginning of each feedback sampling interval, state
and control sequences are updated according to the current
state xs or to a novel final state xf . Sequences obtained
from previous optimizations B are reutilized as for initial-
ization to enable warm starting. The initial state sequence is
obtained from linear interpolation between current and final
state with zero controls. A dedicated loop with Iteb cycles
sequentially adjusts the length n of the state and control
sequences. The purpose of this adaptation is to adapt the
TEB length towards a reference discretization interval ∆Tref
by inserting or deleting samples. Even with a poor guess
of the initial trajectory length, the TEB converges rapidly
towards the optimal state sequence. In case of (TEBg) the
entire trajectory is resampled using linear interpolation, see
[17] for details. Regarding (TEBl), it is sufficient to find
the first ∆Tk for which |∆Tk −∆Tref | < ε is violated and
either remove or add a new sample using linear interpolation.
Finally, the nonlinear program is solved. After Iteb iterations
the first optimal control input u∗1 is applied to the plant.

Remarks on optimality and stability of the TEB approach
are provided in [17]. This work focuses on point-to-point
transitions towards a fixed goal state which requires a
decreasing objective function within consecutive sampling
intervals while retaining feasibility. In practice time optimal
controllers are not favored for stabilizing control, such that
in the vicinity of the target state the MPC (softly) switches
to a conventional quadratic cost function.

III. APPROXIMATE UNCONSTRAINED OPTIMIZATION

This paper further investigates the application of uncon-
strained optimization techniques to the time-optimal TEB-
MPC approach that support sparsity patterns and approxi-
mate the original nonlinear programs (TEBg) and (TEBl).
Unconstrained optimization avoids Lagrange/KKT multipli-
ers causing the dimension of the Hessian matrices to become
identical with the number of primary variables in Bg resp.
Bl. On the other hand, handling hard constraints is difficult.

The nonlinear least-squares optimization problem is solved
efficiently as the solver approximates the Hessian from
first order derivatives. This approximation requires that the
unconstrained objective function is composed of squared
nonlinear terms only. Quadratic penalty functions are applied
to constraints according to [22]. Notice, that other approxi-
mations like barrier, augmented Lagrangian or exact penalty
methods [23] exist, which however contain terms that are not
destined to be squared and can therefore not be applicated
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here. In the following, the transformation is presented based
on the nonlinear program (TEBg). The transformation applies
directly to (TEBl) by substituting subscripts g by l if not
stated otherwise.

A. Nonlinear Least-Squares Approximation with Penalties

The equality constraints are expressed by quadratic penalty
functions. For the sake of readability arguments of con-
straints are omitted in the following:

φ(hk, σ1) = σ1h
ᵀ
kIhk = σ1||hk||22 (6)

σ1 denotes a scalar weight and I ∈ Rp×p is the identity ma-
trix. Inequality constraints are approximated by the following
quadratic penalty function:

χ(gk, σ2) = σ2||min{[0,gk(xk,uk)]}||22 (7)

Here, the min-operator is applied row-wise. σ2 denotes a
scalar weight. Constraints x1 = xs and xn = xf are
eliminated by substitution and are therefore not subject to
the optimization. ∆T is implicitly bounded to R+ due to
the difference quotient in (2) and a positive initial value as
stated in section II-A. With (6) and (7) the approximative,
unconstrained optimization problem is defined as follows:

B∗g = arg min
Bg\{x1,xn}

V 2
g (Bg) +

n−1∑
k=0

[
φ(hk, σ1) +χ(gk, σ2)

]
(8)

Squaring the original objective function Vg(Bg) does not
change the minimizer of (TEBg), since ∆T is strictly positive
by definition. In case of (TEBl), Vl(Bl) already constitutes
a least-squares objective and requires no squared form.

Transforming nonlinear programs into equivalent uncon-
strained optimization problems is a common procedure and
the minimizer of (8) coincides with the actual minimizer
of (TEBg) only if σ1,2 → ∞ [22]. However, large weights
introduce ill-conditioned properties and therefore the un-
derlying solver does not accept adequate step sizes. The
problem might not converge properly. A common remedy
is to increase σ1 and σ2 successively with each iteration.
Regarding our benchmark systems, initializing σ1 = σ2 =
2 in each feedback sampling interval and adapting them
according to σ(i+1) = κσ(i) with κ = 1.2 at each loop of
the TEB-MPC algorithm (see Section II-C) performs well.
Since the MPC is integrated with state feedback and therefore
refines its trajectory during runtime, the actual minimizer for
σ1,2 →∞ is waived in exchange for a suboptimal but more
efficient solution.

B. Solution of the Unconstrained Problem

The literature reports many solvers for nonlinear least-
squares problems (8) such as the popular Gauss-Newton or
Levenberg-Marquardt (LM) algorithm [22]. Our approach
employs LM due to its proper balance between robustness
and efficiency. LM constitutes a trust-region strategy that
only accepts step sizes that decrease the overall cost. Ap-
plying the approach requires the solution of a sparse linear
system for which (H+λI)−1 is computed. H = JᵀJ denotes
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Fig. 1: Hessian matrices of the coupled van-der-pol oscillator.

the Hessian that itself depends on the Jacobian J. λ denotes
a damping factor. The implemented algorithm is borrowed
from [24]. The Jacobian J is represented as a sparse matrix
and is composed from a hyper-graph with dense block
Jacobians as described above. A direct LLt cholesky fac-
torization with fill-in reducing is utilized as sparse linear
solver which is available as part of the C++ math library
Eigen [25]. Hessian matrix structures of both least-squares
approximations (global and local ∆T ) are shown in Figure 1.

IV. CONVERGENCE ANALYSIS AND EXAMPLES

This section analyzes the convergence behavior under
limited computational resources by comparing the different
realizations of the MPC-TEB controller in simulation. It
investigates the solution of the open-loop optimal control
problem within the very first sampling interval. In this case,
a simple and coarse initial trajectory is optimized, while
in further feedback sampling intervals previously obtained
solutions are updated and re-optimized (warm starting). Due
to this fact the quality of the first solution is crucial for the
overall control accuracy. In order to analyze and compare
the convergence resp. optimality of each state or control
sequence, the normalized root-mean-square error (NRMSE)
of both sequences obtained from open-loop control w.r.t. to
the known optimal solution is observed. Applying open-loop
control with the same plant model in simulation enforces
satisfaction of constraints. The optimal solution is obtained
by solving the nonlinear program (TEBg) of the TEB-MPC
approach, whose optimality has been validated on other
benchmark systems in [17]. The reference nonlinear program
converges towards a KKT point and therefore satisfies first
order necessary conditions for optimality. Notice, that mea-
suring the NRMSE rather than the residual error towards
the KKT-Point is favored, since the approximative objective
function (8) does not contain necessary Lagrange multipliers
and it further allows a more intuitive interpretation than
artificial merit function values. Simulations are performed in
C++ running on Ubuntu 14.04 (PC: 3.4 GHz Intel i7 CPU).

A. Coupled Van-der-Pol Oscillator

The first benchmark system is composed of two coupled
Van-der-Pol oscillators. Each Van-der-Pol oscillator in its
own constitutes a second order system with nonlinear damp-
ing. The coupled system is defined by the following nonlinear
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differential equations.

ẍ1 = −(x21 − 1)ẋ1 − x1 + (x2 − x1) + u (9)
ẍ2 = −(x22 − 1)ẋ2 − x2 + (x1 − x2) (10)

Only the first oscillator is effected by the control input u.
Transforming these equations into a state space representa-
tion with state vector x = [x1, ẋ1, x2, ẋ2]ᵀ results in a fourth
order system:

ẋ = f(x, u) =


ẋ1

−(x21 − 1)ẋ1 − 2x1 + x2 + u
ẋ2

−(x22 − 1)ẋ2 − 2x2 + x1

 (11)

The control task is to guide the system from the initial state
x0 = 0 towards the final state xf = [1, 0, 0.5, 0]ᵀ in minimal
time while restricting the control to |u| ≤ 1.6. Equality
constraints hk are obtained by combining (4) with (2) and
(11). Bounds on u are captured by gk(uk) = [u+ 1.6,−u+
1.6]ᵀ. In the following analysis the computation time for op-
timization is bounded to 25 ms while the trajectory length n
is varied. The resulting NRMSE for the different approaches

50 100 150 200

0.1

0.15

0.2

0.25

Trajectory length n
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M
SE

TEBg TEBl

TEBg LS TEBl LS

Fig. 2: Open-Loop control result with fixed computation time
to 25 ms and increasing trajectory length n

w.r.t. reference state and control sequences is depicted in
Figure 2. Two different phases in the evolution of the NRME
over the trajectory length are apparent. In the first phase
(n < 50) the error decreases as the discretization error w.r.t.
to the optimal solution with n = 200 is reduced with more
samples. The TEB optimizations converge within the first
25 ms. Even at a resolution of n < 50 a fit of more than 90%
is achieved. The fit is calculated by 100(1−NRMSE)%. In
the second phase (n > 50) the optimizer is no longer able to
converge within the first 25 ms. As the computational burden
increases with the number of parameters the convergence de-
teriorates for increasing trajectory length. The least-squares
(LS) realizations of TEB-MPC generally exhibit lower errors,
whereas (TEBg) performs best. Global ∆T approaches score
better on this benchmark. Figure 3 shows the evolution of
the NRMSE for n = 70 w.r.t. the elapsed computation time
in this ignoring the 25 ms restriction. Obviously, the least-
squares realizations converge faster to a suboptimal solution
of 90% fit than the original nonlinear programs. However,
beyond a computational budget of 50 ms, the actual programs
outperform the least-squares solutions that converge more
slowly to the optimal solution. Notice, that the NRME is still
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Fig. 3: Convergence of the Coupled-Van-der-Pol oscillator

biased, since the reference solution has a higher resolution
(n = 200) with steeper steps in the control. Reference state
and control trajectories are depicted in Figure 4. Figure 4
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Fig. 4: Reference trajectories and closed-loop example

also shows an example of the closed-loop control achieved
by the least-squares approximation with local ∆Tk. It copes
with a slight model mismatch due to a 5th order Runge-Kutta
integrator in the actual plant model.

B. Integrator Chain with State and Input Nonlinearities

The second benchmark analyzes the evolution of the
NRMSE w.r.t. an increasing state vector dimension p leading
to larger dense blocks in the Hessian (see Figure 1). In
particular, the benchmark system models a chain of p inte-
grator systems with input nonlinearities. The overall system
is defined with x = [x1, x2, . . . , xp]

ᵀ as follows:

ẋ = f(x, u) =


tanh(x2)
tanh(x3)

...
tanh(xp)
tanh(u)

 (12)

The control task is the transition between xs = 0 and xf =
[1, 0, 0, . . . ]ᵀ in minimal time with |u| ≤ 1. Computational
resources for the MPC step are limited to 10 ms. Trajectory
lengths are fixed to n = 50. Figure 5 depicts the evolution of
the NRMSE w.r.t. system order p for the different TEB-MPC
realizations. For each order p, reference state and control
sequences are generated according to the previous example
with resolution n = 50. The evolution of (TEBg) and (TEBl)

469



2 4 6 8 10
0

0.05

0.1

0.15

Order p

N
R

M
SE

TEBg TEBl

TEBg LS TEBl LS

Fig. 5: Integrator system with increasing order: open-loop
solution after 10 ms computation time.

is similar to each other. Like in the previous benchmark,
the least-squares approximations are able to achieve a lower
NRMSE (in particular for p ≥ 4) within the first 10 ms,
but apparently the local ∆Tk approach performs best on this
benchmark. This might be caused by the growth of the local
structure (dense blocks for each tuple {xk,xk+1,u,∆Tk})
of the Hessian that mostly depend on the system dynamics
constraint with dimension p. The local approach does not
share a common ∆T which requires global adaptation across
all state transitions.

V. CONCLUSIONS AND FUTURE WORK

The TEB-MPC formulation for time-optimal point-to-
point transitions is extended to an alternative representation
resulting in a banded sparsity pattern. Under limited compu-
tational resources, a convergence investigation is performed
on two different benchmark systems. In particular, the prob-
lem size is varied either by increasing the trajectory resolu-
tion and or by increasing the order of the system dynamics.
Least-squares approximations of the optimization problem
are applied to the original problems and are included in the
evaluation. It turns out that they provide an approximate
solution that matches nearly 90 % of the optimal solution
within a very short computation time. Surprisingly, solving
the actual TEB-MPC nonlinear programs is fast, such that
they quickly converge towards a nearby perfect match. As
a conclusion solving the constrained problem is favorable
as long as the computational resources are sufficient. In
applications that are restricted to tight computational budgets,
the least-squares solution provides a reasonable trade-off
between efficiency and optimality. As a second insight, the
banded sparsity pattern performs better for higher order
systems whereas the original approach provides a better
solution in case of the first benchmark system and a much
higher resolution. In practice, the decision for either one of
the approaches might depends on the specific properties of
the system and the real-time demands of the application.

Future work is concerned with the generalization of the
results within a theoretical framework. In order to close
the gap between the least-squares solution and the actual
KKT-point, more advanced penalty adaptation methods are
considered. Furthermore, the newly introduced sparsity pat-
tern constitutes a banded matrix for which dedicated solvers
might be utilized.
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for nonlinear optimization in optimal feedback control,” SIAM Journal
on Control and Optimization, vol. 43, no. 5, pp. 1714–1736, 2005.

[4] R. Quirynen, S. Gros, and M. Diehl, “Inexact newton based lifted
implicit integrators for fast nonlinear mpc,” in IFAC Nonlinear Model
Predictive Control Conference (NMPC), 2015.

[5] D. Kouzoupis, H. J. Ferreau, and M. Diehl, “First-order methods in
embedded nonlinear model predictive control,” in European Control
Conference (ECC), 2015.

[6] Y. Wang and S. P. Boyd, “Fast model predictive control using online
optimization,” in IFAC World Congress, vol. 17, 2008, pp. 6974–6979.

[7] A. Richards, “Fast model predictive control with soft constraints,” in
European Control Conference, 2013, pp. 1–6.

[8] K. S. Pakazad, H. Ohlsson, and L. Ljung, “Sparse control using sum-
of-norms regularized model predictive control,” in IEEE Conference
on Decision and Control, 2013.
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