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Abstract— This contribution presents a novel approach for
nonlinear time-optimal model predictive control (MPC) based
on Timed-Elastic-Bands (TEB). The TEB merges the states,
control inputs and time intervals into a joint trajectory repre-
sentation which enables planning of time-optimal trajectories
in the context of model predictive control. Model predictive
control integrates the planning of the optimal trajectory with
state feedback in the control loop. The TEB approach for-
mulates the fixed horizon optimal control problem for point-
to-point transitions as a nonlinear program. The comparative
analysis of the TEB approach with state-of-the-art approaches
demonstrates its computational efficiency. The TEB approach
generates a trajectory that approximates the analytical time-
optimal trajectory in few iterations. This efficiency enables the
refinement of the planned state and control sequence within the
underlying closed-loop control during runtime.

I. INTRODUCTION
As technical processes become progressively more com-

plex, the demands for their control and automation increase
as well. Hence advanced control concepts that explicitly
consider constraints on control and state variables gain im-
portance in research and applications. In this context model
predictive control (MPC) provide a means to repeatedly solve
a receding horizon optimal control problem for nonlinear
dynamic processes with multiple inputs and outputs [1].
In process automation, especially in the field of chemical
engineering, model predictive controllers are well established
[2]. Solving optimal control problems under constraints is
computationally demanding and thus until recently has been
only applied to slow processes.

In the past decade the advancement of control schemes for
mechatronic systems caused an interest in numerically effi-
cient implementations of MPC. The majority of approaches
in MPC are concerned with the minimization of quadratic
cost functionals with respect to control error and effort. These
conventional formulations of MPC objectives are not directly
applicable to time-optimal control tasks.

Direct methods discretize the states and controls and
thereby approximate the calculus of variations by a finite
parameter nonlinear program. Diehl et al. solve the optimal
control problem with an efficient multiple-shooting approach
[3]. The approach rests upon multiple partitions of the time
horizon into discrete intervals, for which isolated initial
value problems are solved in parallel. In [4] the original
approach is extended to a real-time iteration scheme, which
subsequently refines an initial coarse approximation at run-
time. Recent methods reformulate the optimization problem
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in order to allow a more efficient computation based on
inner-point-methods [5], [6], [7]. The nonlinear program is
simultaneously solved with respect to controls and states.
Although the resulting problem possesses more variables, its
structure remains sparse which enables its numerical efficient
optimization. Vukov et al. treat long horizons with automatic
code generation strategies that explicitly exploit structure [8].
An efficient method based on projected gradients is presented
in [9] within a real-time capable MPC scheme. Regarding
linear systems, the approach by Zeilinger et al. guaranties
stability and feasibility under hard real-time conditions [10].

Explicit MPCs solve the general parameterized optimiza-
tion problem offline. The optimal control action for the
current state and target is extracted from a precomputed
lookup table [11]. The explicit approach requires an a-
priori discretization of the operational space. The look-
up table representation has the drawback that the memory
requirements grow exponentially with the dimension of the
state space, thus limiting the approach to low order dynamics.

The above mentioned approaches mainly consider cost
functionals that penalize a combination of control error and
effort. In case of time-optimal point-to-point transitions,
conventional approaches are not readily applicable for real-
time applications. Explicit cost terms that minimize the
settling time are considered in [12] for a quasi time-optimal
control of a spherical robot. The approach is based on an
indirect solution of the problem in terms of calculus of
variations and a time transformation of the continuous system
dynamics. The cost functional is adapted in the vicinity of
the goal state in order to minimize the control effort rather
than time for the final control steps. A drawback of indirect
methods is the difficulty of handling inequality constraints
and the strong dependence on the initial solution.

The concept of direct MPC is extended to time-optimal
point-to-point transitions in [13]. The method called TOMPC
minimizes the settling time in a two layer optimization
routine. The outer loop incrementally reduces the horizon of
the control sequence until the inner loop nonlinear program
no longer generates a feasible solution for the allocated time
horizon. Since the objective function minimizes the distance
of discrete states to the final state, the solution with the
shortest feasible horizon is quasi time-optimal. Due to the
lower bound on the time horizon, the algorithm behaves like
a conventional MPC in the vicinity of the goal state and
therefore guarantees stability. The runtime strongly depends
on the initial estimation of the settling time, as it determines
the number of iterations in the outer loop time horizon
reduction. An alternative approach that follows a reference
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path in minimal time is presented in [14]. Time-optimality is
nearly achieved in case of long time horizons. In applications
such as race car automatic control, MPC methods are used to
minimize the lap time [15], [16]. Explicit MPC is extended
to the offline computation of time-optimal tasks for linear
time-invariant and piecewise affine systems [17].

This work presents a novel approach to time-optimal MPC
for point-to-point transitions of nonlinear dynamic systems.
The concept is based on Timed-Elastic-Bands (TEB) for
the representation of the underlying state and control se-
quence. Originally, the TEB approach is designed to deform
and optimize trajectories of mobile platforms. The classic
Elastic-Bands developed by Quinlan et al. deform an initially
coarsely planned, pure geometric path under the presence
of internal and external forces [18]. Internal forces contract
the path to obtain the shortest path without detours, while
external forces maintain a separation between the path and
obstacles. [19] presents the TEB approach as an optimization
based trajectory deformation with a sparse structure and the
explicit incorporation of temporal information. Kinodynamic
constraints and nonholonomic kinematics are taken into ac-
count. Keller et al. extend the TEB to the planning of optimal
collision maneuvers for automotive applications [20].

The utilization of TEBs for MPCs requires the extension
of the trajectory representation to state and control sequences
that are mutually constrained by the system dynamics while
preserving a sparse structure and temporal representation.
The optimization problem is formulated as a nonlinear
program that is efficiently solved with online active-set or
interior-point methods. In contrast to conventional MPCs that
operate either in continuous time domain or in discrete time
domain using a fixed sample rate, the TEB approach retains
the discrete time interval between consecutive states as an
explicit optimization parameter. This strategy allows the
contraction and expansion of the control and state sequence
with respect to the transition time, leading to a quasi time-
optimal control. The analogy to deforming elastic bands with
fixed start and goal in state space motivates the term TEB
for the presented MPC strategy.

The next section introduces the general concept of the
TEB based MPC approach, in particular formulating and
solving the open-loop optimization problem and performing
the closed-loop control. Section III presents examples and
simulations of the proposed method with a focus on the
comparison with a state-of-the-art approach for time-optimal
MPC called TOMPC [13]. Finally, section IV summarizes
the results and provides an outlook on further work.

II. TIMED-ELASTIC-BAND BASED MPC
APPROACH

A. Formulation of the Open-Loop Optimization Problem

A nonlinear, autonomous dynamic system with p states
and q inputs is defined by:

ẋ(t) = f(x(t),u(t)), x(t = 0) = xs (1)

in which x ∈ Rp denotes the time dependent state and
u ∈ Rq the corresponding control input. xs ∈ Rp denotes

the initial state at time t = 0 s. This system of continuous
differential equations is approximated and discretized by
finite differences. The approach assumes forward differences
ẋ(t) ≈ ∆T−1(xk+1−xk) since for most practical scenarios
their accuracy is sufficient to correct the model mismatch
during closed loop control. The discretized system dynamics
is given by:

∆T−1(xk+1 − xk) = f̃(xk,uk) k = 1, 2, . . . , n− 1 (2)

This approximation allows a discrete parameterization of the
state and control sequence with n states and n−1 controls in
combination with a strictly positive temporal discretization
∆T ∈ R+. These parameters are lumped together into the
TEB set B ⊆ Rd̃ with d̃ = np+ (n− 1)q + 1:

B := {x1,u1,x2,u2, . . . ,xn−1,un−1,xn,∆T} (3)

In contrast to the TEB formulation in [19], which recon-
structs the control sequence uk by inverting (2), our novel
approach considers the control as an explicit optimization
parameter. The TEB strategy incorporates the temporal dis-
cretization ∆T into the optimization problem. Furthermore,
within each sampling interval of the closed loop control, the
number of samples n is adjusted such that it approximately
matches the underlying sample rate. This flexibility with
respect to the temporal discretization offers advantages for
time-optimal control compared with MPC approaches that
rely on a fixed temporal discretization.

The open loop optimization task involves the planning of
the controls for (2) in order to transit from the initial state
xs to the final target state xf in minimal time T . According
to (3), the transition time T ∈ R+ is determined by T ≈
(n − 1)∆T . The optimal control sequence is obtained by
solving the following nonlinear program:

V ∗(B) = min
B

(n− 1)∆T (4)

subject to
x1 = xs, xn = xf , ∆T > 0

hk(xk+1,xk,uk,∆T ) = 0 (k = 1, 2, . . . , n− 1)

g1(u1) ≥ 0

gk(xk,uk) ≥ 0 (k = 2, 3, . . . , n− 1)

Initial x1 and final TEB state xn are constrained by xs and
xf and thus not subject to TEB optimization. The equality
constraints hk(xk+1,xk,uk,∆T ) = ∆T−1(xk+1 − xk) −
f̃(xk,uk) = 0 originate from the system dynamics (2).
Inequality constraints g1 : Rq → Rr are imposed on the first
control u1. Further controls and states are restricted by in-
equality constraints gk : Rp×Rq → Rr, k = 2, 3, . . . , n− 1.
The linear objective function V (B) = (n−1)∆T is bounded
from below since ∆T is strictly positive. Notice, that even for
linear systems, which implies that (1) is linear, the optimiza-
tion problem (4) contains nonlinear equality constraints and
therefore can no longer be solved as a basic linear program.

B. Optimality of the TEB Open-Loop Optimization Problem
Initial state x1 and final state xn are fixed during opti-

mization and substituted in the cost function and constraints
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by the constants xs and xf . The reduced optimization vector
b ∈ B \ {x1,xn} ⊆ Rd with d = p(n − 2) + q(n − 1) + 1
is defined by

b := [u1,x2,u2, . . . ,xn−1,un−1,∆T ]ᵀ (5)

The vector-valued equality constraints are given by
h(b,xs,xf ) = [hᵀ

1 ,h
ᵀ
2 , ...,h

ᵀ
n−1]ᵀ and the inequalities by

g(b,xs,xf ) = [gᵀ
1 ,g

ᵀ
2 , ...,g

ᵀ
n−1,∆T ]ᵀ. For the sake of

readability arguments in both functions are omitted in the
following.

The Lagrangian of problem (4) is given by:

L(b,µ,λ) = (n− 1)∆T − µᵀh− λᵀg (6)

µ ∈ Rp(n−1) and λ ∈ Rr(n−1)+1 are referred to as constraint
multiplier vectors. A local solution b∗ of (4) has to satisfy
the first order necessary conditions, known as the Karush-
Kuhn-Tucker (KKT) conditions. Assuming some constraint
qualifications (CQ) hold at b∗ (see below), multiplier vectors
µ∗ and λ∗ exist which satisfy the following conditions for
(b∗,µ∗,λ∗) [21]:

∇bL(b∗,µ∗,λ∗) = 0, (7)
gi(b

∗) ≥ 0, λ∗i ≥ 0 (8)
hi(b

∗) = 0, µ∗i hi(b
∗) = 0, λ∗i gi(b

∗) = 0 (9)

gi, hi, λi, µi denote the elements of g,h,λ,µ respectively.
The linear independence QC (LICQ) is a common constraint
qualification for nonconvex, nonlinear constraints, which
holds if the set of active constraint gradients is linearly
independent at b∗ [21].

Remark 1: Constrained optimization algorithms usually
do not cover strictly positive inequality constraints. The
difference quotient in (2) is not defined for ∆T = 0. Hence,
∆T > 0 is satisfied implicitly by preserving the difference
quotient instead of eliminating the fraction and in addition
by starting initially with ∆T > 0. The implemented line-
search based on an exact merit function Φ(·) (see Section
II-C) ensures lim∆T→0+ Φ(·) =∞ and hence it rejects step
lengths causing ∆T = 0.

To formally confirm, that b∗ actually constitutes a local
minimizer of (4), sufficient conditions must hold. A second
order sufficient condition requires the Hessian of the La-
grangian ∇bbL(b∗,µ∗,λ∗) to be positive semidefinite at
(b∗,µ∗,λ∗) [21].

C. Solution of the TEB Open-Loop Optimization Problem

Solving problem (4) requires constrained optimization
algorithms that are well known in literature and for which
many numerical software packages are available. For the
implementation of a real-time capable MPC, common solvers
either employ interior-point methods that exploit a particular
problem structure exploitation, or online-active-set methods
that facilitate hot-starting from previous solutions. Recent
implementations especially for nonlinear MPC operate either
in continuous or in discrete time domain [22]. Our approach
utilizes a sequential programming approach (SQP) based on
the line-search SQP algorithm described in [21]. The SQP

TEB Plant xxf

xs
b

u1

b∗

Fig. 1. Closed-loop TEB control

iteration problem (4) is approximated w.r.t. the objective
function by a quadratic model and w.r.t. the constraints
by a linear approximation. The resulting quadratic program
is solved by qpOases, an homotopy based online-active-
set implementation [23]. It allows hot-starts for subsequent
SQP iterations. qpOases handles semi-definite Hessians that
may result due to the linear objective function. TOMPC
as well successfully uses qpOases for time-optimal MPC
[13]. In order to execute a sufficient step along the gradient
descent direction of problem (4) based on the solution of the
quadratic approximation, a l1 exact merit function Φ(·) is
minimized in the underlying backtracking line-search [21].
To speed up the optimization, a common BFGS quasi-newton
approximation for an efficient estimate of the Hessian is
applied. Note, that the TEB has been tested successfully with
Matlab R©’s constrained optimization algorithms.

D. Closed-Loop TEB Control

This section describes the integration of the TEB open-
loop optimization based trajectory planning into the closed-
loop control. Figure 1 shows the block diagram of the
underlying control architecture. The TEB algorithm identifies
the (quasi) optimal trajectory b∗ with respect to problem
(4) in order to regulate the transition to the final state xf

depending on the current plant state xk. At each sampling
interval, the imminent control action u1 of the planned
sequence is applied as input to the plant. The state xk is
either directly measurable or estimated by a state observer.
The optimized trajectory b∗ is stored, respectively fed back,
in order to hot-start subsequent optimizations at subsequent
sampling intervals. The algorithm operates according to:

1: procedure TIMEDELASTICBAND(b,xs,xf )
2: Initialize or update trajectory
3: for all Iterations 1 to Iteb do
4: Adjust length n, resp. d of the trajectory
5: b∗ ← SOLVENLP(b) . solve (4)
6: Check feasibility

return (sub-) optimal TEB b∗,u∗1

The first sampling interval requires an initial guess of b.
A first analysis shows that for most time optimal control
problems a linear interpolation xk = xs + kn−1(xf − xs)
between start and final state with zero controls uk = 0 is
sufficient for convergence to the global optimal solution.
Obviously, this initialization strategy does not guarantee
global convergence in the general case, since numerically
solving (4) leads to a local minimizer only with respect to
the initialization b.

The previous solution b∗ provides the initialization to the
optimal control problem (4) at the next sampling interval.
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The new initial trajectory is updated by replacing x1 and xn

by the most recent state estimate x and xf respectively.
The initialization is followed by an outer optimization loop

that iterates Iteb times. At first the trajectory length in terms
of the number of state and control samples n is adapted
depending on the current time increment ∆T :
• If ∆T > ∆Tref + ∆Thyst ∧n > nmin, remove a state.
• If ∆T < ∆Tref−∆Thyst∧n < nmax, insert new state.

∆Tref denotes a time increment (usually related to the
inherent sampling time), ∆Thyst introduces a hysteresis in
order to avoid oscillations when adding and removing states.
nmin and nmax provides a lower and upper bound on the
number of samples. At each instance either a new state is
inserted or an obsolete state is removed from the TEB. The
complete trajectory is re-sampled by linearly interpolating
each state and control sequence with respect to time. Thus,
the updated time interval is set to ∆Tnew = ∆T n

nnew
.

Adapting the length of the TEB has several advantages:
The number of samples decreases as the current state con-
verges towards the target state. Assuming fixed computa-
tional resources, the number of feasible iterations to improve
the quality and accuracy of the trajectory increases as the
computational demand for a single iteration with fewer
samples decreases. In contrast, changes on the final state or
disturbances may require a longer trajectory, respectively a
finer discretization. As an example consider a mobile robot
navigation scenario, in which a dynamic obstacle penetrates
the original trajectory requiring an expansion of the path. In
case the number of samples remains constant, the distance
between two consecutive states increases with increasing
path length, resulting in a non smooth trajectory. In the worst-
case the obstacle slips through the trajectory due to a coarse
resolution of samples.

The TEB algorithm repeatedly solves the underlying non-
linear program (4) by invoking an SQP solver Isqp times. The
TEB algorithm leads to an elastic band in state- and control
space, which convergence behavior is mainly influenced
by the choice of Iteb and Isqp (despite of specific solver
configurations).

E. Stability of Closed-Loop TEB Control

Stability analyses of MPCs are often realized by use of
control Lyapunov functions [24]. Consider finite horizon
problems with final equality constraints (xn = xf ) such that
(4). The solution b∗j is only valid if it satisfies the system
dynamics, the final state equality constraint, each inequality
constraint and results in a feasible control sequence. The
principle of optimality demands that the objective function
V (B) is monotonically decreasing, such that the problem
converges to xf [24]. Figuratively, the TEB contracts be-
tween fixed xs and xf implying convergence due to the
formulation of (4) that minimizes ∆T .

Note, that the approach allows an asynchronous integration
of control and planning rather than to operate with constant
time slots for planning. In contrast to conventional MPC
formulations it is possible to decouple the underlying rates
of control and planning. The control sample rate is adapted

to ∆T in order to decrease the number of recalculations
and interventions as often as necessary. Considering the
assumptions above, convergence is preserved which imme-
diately follows by the convergence proofs of sample-based
MPC [25] and MPC with asynchronous measurements and
control [26].

In practice, numerical instabilities might emerge in the
TEB as the actual state converges towards the target state
xf . While converging to xf and n = nmin, it follows
∆T → 0 which is undefined for the difference quotient in
(2). Although according to section II-B ∆T > 0 is ensured,
too small time intervals ∆T are avoided as they cause
numerical instabilities. This lower bound is accomplished by
the inequality to ∆T −ε > 0 with 0 < ε < ∆Tref −∆Thyst.
Future work is concerned with the analysis of integrated
switching strategies that utilize quadratic objective functions
while converging towards the target xf .

III. EXAMPLES

This section analyses the performance and potential of
the TEB algorithm on the control of two nonlinear systems.
The behavior of the closed loop control with TEB according
to Fig. 1 is investigated in simulation. The simulations are
done in Matlab (PC: 3,4 GHz Intel i7 CPU) with a problem
specific, but fixed sampling time ∆Tref . The SQP algorithm
is compiled as a C++ program using code generation and
the underlying quadratic program is solved by qpOases
using a mex-C++-Interface. Note, the sparse structure of
the optimization problem is not exploited within this work.
However, dedicated solvers might reduce the computational
effort of the TEB optimization significantly.

The TEB algorithm is compared to TOMPC that consti-
tutes a state-of-the-art MPC extension to time-optimal point-
to-point control (see description in Section I). TOMPC is
reimplemented by the authors within the same framework
by means of sharing the same SQP algorithm, initialization
phase and data structures to allow a consistent and fair
evaluation and comparison with the TEB formulation.

State trajectories are initialized as a straight line (see
Section II-D). Unless stated otherwise, Iteb = 2, Isqp = 2
and Itompc = 3 are applied. The number of total SQP
iterations Iteb · Isqp = 4 is chosen to be increased by one in
comparison to TOMPC, since the TEB may adapt the length
occasionally. It is ∆Thyst = 0.1∆Tref and nmin = 3.

A. Van-der-Pol Oscillator

The Van-der-Pol oscillator constitutes an oscillatory dy-
namic system with nonlinear damping. The system is de-
scribed by ẍ(t)+(x2(t)−1)ẋ(t)+x(t) = u(t). The evolution
of the state vector x = [x(t), ẋ(t)]ᵀ is governed by the state-
space representation:

ẋ = f(x, u) = [ẋ, −(x2 − 1)ẋ− x− u]ᵀ (10)

Discretizing the system with finite differences leads to:

hk(xk+1,xk, uk,∆T ) = ∆T−1(xk − xk+1) + f̃(xk, uk)
(11)
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fitteb,ol1(ẋ) = 75%
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Fig. 2. Closed-loop control of the Van-der-Pol oscillator

The control input is bounded to −1 ≤ u ≤ 1 that is captured
by the inequalities gk(u) = [u+ 1,−u+ 1]ᵀ ≥ 0.

As a reference for TEB and TOMPC, the actual time-
optimal trajectory is obtained by solving a continuous
boundary-value-problem (BVP) with Matlab’s bvp4c algo-
rithm. To create a suitable BVP, the control input sequence is
modeled as a sign-function that is smoothed by an expansion
of the state dimension. Time-optimality is accomplished
using a time transformation. The interested reader is referred
to [27] for more details.

The task is to transit the oscillator from the initial state
xs = [0,−0.5]ᵀ to the target state xf = [1, 0]ᵀ in minimum
time. The sampling time is set to ∆Tref = 0.01 s. Figure 2
shows the resulting state and control input trajectories of
the system for the closed-loop TEB control, the closed-loop
TOMPC control and the BVP reference. In addition the
planned open-loop (OL) trajectory obtained after the first
two TEB iterations for just n = 10 samples, is plotted. In
order to compare the trajectories to the BVP reference, the
quality of the fit between the executed trajectory x(t) and
the known optimal trajectory is given by fit(x) = 100(1−
NRMSE(x)). NRMSE(x) denotes the normalized root
mean square error. The reference argument is omitted. The
results in Fig. 2 confirm that both TEB and TOMPC approx-
imate the time-optimal control equally well.

The following analysis investigates the convergence be-
havior of the planned trajectory with respect to the number
of optimization iterations. Initially, the trajectory length is
set to n = 10, which is obviously a poor guess since it
implies n · ∆Tref = 0.1 s across the entire transition. The
trajectory is optimized with Iteb = Isqp = 2 which amounts
to a CPU time of 4 ms. The resulting trajectory is shown
in Fig. 2. Afterwards, the optimization is repeated multiple
times to refine the current trajectory until ∆T = ∆Tref .
Figure 3 shows the fit value with respect to the number of
invocations of the underlying optimization routine and the
associated time for computation. The corresponding trajec-
tory length is indicated by a second abscissa. Surprisingly,
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Fig. 3. TEB trajectory optimization refinement

the state trajectories converge rapidly towards a fit value of
≈ 90% and therefore approximate the time-optimal transition
within a few iterations. Even the first optimization call with
n = 10 results in feasible although suboptimal trajectories.
The control input u is optimal for the imminent control cycle
1 s, hence there is no degradation in control performance
while the TEB is further refined across the next control
cycles. Note, as a result the TEB transfers the idea of real-
time-iteration schemes to time-optimal MPC.

In contrast, solving the same problem with ninit = 10,
TOMPC requires 146 s to generate time-optimal trajectories.
TOMPC increases n by one each outer optimization loop
until the problem is feasible. Due to a fixed ∆T = ∆Tref
all trajectories (attempt to be) planned before are infeasible
(below n = 235) and hence provide no meaningful controls.
Considering Fig. 3, the TOMPC CPU time is proportional
to the integral of the TEB CPU time starting from ninit.
Applied to closed-loop control, TOMPC induces similar
results in fit and CPU time if a suitable n is determined in
advance. However with changes in the target state or external
disturbances the CPU time is significantly larger.

B. Free-space Rocket System

The second example comprises the control of a free-
space rocket system that is frequently mentioned in the MPC
literature. The nonlinear systems equations are given by:

ṡ(t) = v(t) (12)
v̇(t) = (u(t)− 0.2v(t)2)/m(t) (13)
ṁ(t) = −0.01u(t)2 (14)

The mass m is bounded to −0.5 ≤ m ≤ 1.7. s denotes
the distance covered, v is the velocity. −1.1 ≤ u ≤ 1.1
denotes the system input. hk and gk are obtained according
to the procedure in Section III-A. The sampling time is set
to ∆Tref = 0.1.

For the following closed-loop control simulation (see
Fig. 4), a sequence of two final states is given. The system
starts at xs = [xs, vs,ms]

ᵀ = [0, 0, 1]ᵀ. The controller is
only aware of the current final state (marked with dashed
lines as reference), which switches after 10 s. In contrast to
the original problem formulation (4), the final state m is
no longer constant to add a degree of freedom, since the
final mass is a priori unknown. A step disturbance is applied
to the system output s(t = 6 s). The required computation
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Fig. 4. Closed-loop control of the free-space rocket system

TABLE I
COMPUTATION TIME OF ROCKET SYSTEM OPEN-LOOP CONTROL

ninit TEB CPU Time TOMPC CPU Time

26 0.019 s 0.587 s
51 0.123 s 0.148 s
52 0.131 s 0.111 s
53 0.138 s 0.186 s
104 1.400 s 12.721 s

time to generate a first feasible trajectory for varying ninit
is shown in Table I. The given sampling time is reached for
ninit = 52.

IV. CONCLUSIONS AND FUTURE WORK

The extension of TEBs to time-optimal MPC tasks per-
forms well on two nonlinear systems presented in this paper.
The results are evaluated using ground-truth time-optimal
trajectories as a reference. In comparison to a state-of-
the-art approach the TEB is able to generate a feasible
approximation to time-optimal control already after a few
iterations. The resulting state and control input trajectories
are subsequently refined during closed-loop control.

Future work is concerned with exploiting the sparse struc-
ture of the TEB optimization problem in order to reduce
the computational effort. Furthermore, switching strategies
to quadratic cost functionals are considered to guarantee
asymptotic stability upon convergence to the target state.
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F. Allgöwer, “Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations,”
Journal of Process Control, vol. 12, no. 4, pp. 577–585, 2002.

[4] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
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