
Efficient Trajectory Optimization using a Sparse Model
Christoph Rösmann, Wendelin Feiten, Thomas Wösch, Frank Hoffmann and Torsten Bertram

European Conference on Mobile Robots, Barcelona, Spain, 2013

“ c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.”



Efficient Trajectory Optimization using a Sparse Model

Christoph Rösmann1, Wendelin Feiten2, Thomas Wösch2, Frank Hoffmann1 and Torsten Bertram1

Abstract— The ”timed elastic band” approach optimizes
robot trajectories by subsequent modification of an initial tra-
jectory generated by a global planner. The objectives considered
in the trajectory optimization include but are not limited to
the overall path length, trajectory execution time, separation
from obstacles, passing through intermediate way points and
compliance with the robots dynamic, kinematic and geometric
constraints. ”Timed elastic bands” explicitly consider spatial-
temporal aspects of the motion in terms of dynamic constraints
such as limited robot velocities and accelerations. The trajectory
planning operates in real time such that ”timed elastic bands”
cope with dynamic obstacles and motion constraints. The
”timed elastic band problem” is formulated as a scalarized
multi-objective optimization problem. Most objectives are local
and relate to only a small subset of parameters as they
only depend on a few consecutive robot states. This local
structure results in a sparse system matrix, which allows the
utilization of fast and efficient optimization techniques such
as the open-source framework ”g2o” for solving ”timed elastic
band” problems. The ”g2o” sparse system solvers have been
successfully applied to VSLAM problems. This contribution
describes the application and adaptation of the g2o-framework
in the context of trajectory modification with the ”timed
elastic band”. Results from simulations and experiments with a
real robot demonstrate that the implementation is robust and
computationally efficient.

I. INTRODUCTION

Trajectory planning finds an optimal collision free trajec-
tory that complies with the robots kinematic and dynamic
motion constraints. This paper focuses on trajectory modi-
fication assuming that a global planner generated an initial
feasible path beforehand [1]. In particular in the context of
service robotics the dynamic modification of a preplanned
path is preferable over offline trajectory planning. Online
modification copes with changes of a dynamic environment
by incorporating the most recent sensor data for local re-
finement of the trajectory. In most realistic applications the
model of the environment is subject to continuous change
due to partial, incomplete maps and dynamic obstacles.
Furthermore, the (re-)computation of a large scale global
path is often not feasible in real-time applications. This
observation leads to approaches which modify a path locally,
such as the ”elastic band” proposed by [2], [3].

Later the original approach was extended to nonholonomic
kinematics [4], [5], [6] and robotic systems with many
degrees of freedom [7]. [8] proposed a method, where an
initial path is deformed using optimization techniques. The
trajectory, i.e. the velocities along the path, are not optimized.
The time parameter is used to control the modifications of

1Institute of Control Theory and Systems Engineering, Technische Uni-
versität Dortmund, Germany

2Siemens Corporate Technology, Research Group Robotics, Germany

the path as the optimization proceeds. The planner considers
the nonholonomic constraints.

[9] deals with the deformation of trajectories rather than
paths by an explicit consideration of temporal information.
The deformation is decomposed into an obstacle avoidance
step using repulsive forces and a connectivity maintenance
step. Based on this work [10] proposes a single step approach
that combines external deformation with internal connec-
tivity forces. Both methods support general state transition
models and allow for spatial-temporal obstacle avoidance.
In contrast, our approach is based on a graph-optimization
formulation, operates with general optimization solvers and
time optimality is an explicit objective. Other methods which
directly optimize trajectories are presented in [11], [12].
In our case, a parametric path is augmented with velocity
profiles that respect the kinodynamic constraints of the
platform. The approach starts with an initial path found by
a global planner and represents it by a compact spline-based
path model also used in [13]. This path model exposes a set
of higher-level parameters to the optimization that iteratively
adapts the shape of the curvature continuous path to reduce
an objective function such as the time of travel. The main
difference to our work is that it trades in the precision of the
analytic model for a discretized trajectory model that allows
it to employ a highly sophisticated, efficient optimization
algorithm, enabling trajectory refinement in real-time.

Most recent approaches for trajectory modification dealing
with robot arms with many degrees of freedom use a
discretized representation of the trajectory in configuration
space (see [15], [16]). The proposed objective function
contains a finite difference matrix to smooth the resulting
trajectory and to additionally satisfy constraints like obstacle
avoidance. The CHOMP algorithm relies on a covariant
gradient descent method which explicitly requires the gra-
dients of each objective, whereas STOMP uses a stochastic
trajectory optimization technique without explicit knowledge
of gradients. Both approaches include temporal information
only in implicit manner by defining a specific discretization
and task duration. The differences to our approach are
detailed in Section IV.

In [17] the authors introduced a new approach called
”timed elastic band” which explicitly augments ”elastic
band” with temporal information. The proposed extension
allows the consideration of the robot’s dynamic constraints
and direct modification of trajectories rather than paths.
The ”timed elastic band” is formulated as a scalarized
multi-objective optimization. The structure of the underlying
optimization problem is sparse as most objectives are local
in that they only depend on a few consecutive configurations



rather than the entire trajectory.
Numerical mathematic provides efficient algorithms for

optimization problems with sparse structures that have been
applied successfully to tasks such as ”visual simultaneous
localizing and mapping” (vSLAM) or ”sparse bundle ad-
justment” (SBA) [18]. [19] introduces an open-source C++
framework called ”general (hyper-)graph optimization” (g2o)
which solves graph based nonlinear optimization problems.
An obvious advantage of using a multi-objective optimiza-
tion framework is the modular formulation of the objectives
and constraints.

This paper presents the ”timed elastic band” (TEB) ap-
proach according to a hyper-graph based nonlinear optimiza-
tion problem and the implementation with g2o on a mobile
robot with a differential drive. The robot moves in a planar
environment with three global and two local degrees of
freedom. In general, the TEB is suitable for high dimensional
state spaces. By considering the temporal information, TEB
explicitly considers and controls the robot velocities and
accelerations.

We first introduce the general concept of TEB described
in [17] in more detail, in particular mapping the problem into
a hyper-graph representation, determining initial conditions
of the TEB and the algorithmic implementation. Section III
presents the connection between the ”timed elastic band”
and the g2o-framework. Section IV presents and analyzes
experimental results. Although the experiments in this pre-
sentation describe a non-holonomic robot, the approach is
not limited to any particular robot kinematic or dynamic
structure. Finally, section V summarizes the results of the
TEB and provides an outlook on further work.

II. TIMED ELASTIC BAND

A. Definition of Timed Elastic Band (TEB)

si

{map} x

y βi

si+1
βi+1

ΔTi

si+2
βi+2

ΔTi+1

(a)

Obstacle A

Obstacle B

WP 1

WP 2

WP 3

WP 4

(b)

Fig. 1. (a) TEB: sequences of configurations and time differences and (b)
Large scenario with consideration of way-points and obstacles

The classic ”elastic band” is described in terms of a
sequence of n intermediate robot poses si = [xi, yi, βi]

T ∈
R2×S1, in the following denoted as a configuration defined
by the robots position xi, yi and orientation βi in a global
frame ({map}, Fig. 1(a)):

Q = {si}i=0...n n ∈ N (1)

The TEB augments this representation by incorporating
the time intervals between two consecutive configurations,
resulting in a sequence of n− 1 time intervals ∆Ti:

τ = {∆Ti}i=0...n−1 (2)

Each time interval denotes the time that the robot requires
to transit from the current configuration to the next configu-
ration in the sequence Q (Fig. 1(a)). The TEB is defined as
a tuple of both sequences:

B := (Q, τ) (3)

The key idea is to adapt and optimize the TEB in terms
of both configurations and time differences by a scalarized
multi-objective optimization using the weighted sum model:

f(B) =
∑
k

γkfk(B) (4)

B∗ = arg min
B

f(B) (5)

in which B∗ denotes the optimized TEB and f(B) denotes
the underlying global objective function.

Suitable component objective functions fk for TEB are
presented in [17] and belong to two basic types: constraints
such as velocity and acceleration limits formulated in terms
of penalty functions and objectives functions with respect to
the trajectory such as shortest path, fastest execution time
or clearance from obstacles. Sparse constrained optimization
algorithms are not readily available in robotic frameworks
(e.g. ROS) in a freely usable implementation. This motivates
the adoption of the g2o-framework in which constraints are
formulated as objectives in terms of piecewise continuous,
differentiable cost functions that penalize the violation of a
constraint.

B. Problem representation as a Hyper-Graph

According to equations (4), (5), the TEB is defined as
a scalarized multi-objective optimization problem. Most of
the required objective functions rely on parameters that only
depend on a subset of neighboring configurations of the band:
• Velocity (acceleration) constraints depend on two

(three) consecutive configurations and one (two) time
differences.

• Clearance from obstacles and homing on intermediate
way-points effect a single configuration and its k nearest
neighbors (in practice about 3-5).

• Compliance with the robot’s non-holonomic constraints
involves two adjacent configurations, which are required
to be located on a common arc of constant curvature.

Fastest and shortest path are exceptions to the local structure
as these objectives that globally depend on all parameters.
The fastest path with temporally uniformly spaced configu-
rations is obtained by minimizing the square of the sum of
all time differences or alternatively the sum of squared time
differences.

This property of locality of TEB results in a sparse system
matrix which is represented by a hyper-graph, where the
nodes correspond to the configurations and time intervals.
The nodes containing parameters that contribute to the same
objective function are connected by a corresponding multi-
edge. In the following, equation (4) is transformed into a
hyper-graph. The definition of a hyper-graph implies that
the number of nodes that are connected by a single edge



is not limited to two nodes as in a conventional graph. A
hyper-edge is an extension of a conventional edge as its
connects multiple nodes with each other. Each objective
functions depends on a subset of TEB-states (configurations
and time differences), a hyper-edge represents the objective
function fk and connects nodes which correspond to the
configurations and time differences that occur as parameters
in its evaluation.

s0 s1

ΔT0

Velocity fvel

o1

O
bs

ta
cle

 f ob

(a) Velocity and obstacle objec-
tive function formulated as
a hyper-graph

s0

o1p1

s1 s2 s3

ΔT0 ΔT1 ΔT2

ftime

frate
frate frate

fvel fvel fvel

fpath

fob

fob

fob

fob

facc facc facc

fnh fnh fnh

(b) Simplified example structure of TEB
hyper-graph

Fig. 2. Hyper-Graph structures: nodes (circles) and multi-edges (rectangles)

Fig. 2(a) shows a simple example of a hyper-graph rep-
resenting a constraint and an objective related to two subse-
quent configurations s0, s1, their time difference ∆T0 and an
obstacle o1 ∈ R2. Notice, that our specific implementation
partitions each configuration node into a position node and
an orientation node to facilitate the modular activation and
deactivation of objective functions. The velocity objective
function puts an upper bound on the distance between s0 and
s1 that the robot is able to travel within the allocated time
∆T0. Velocity-multi-edges (fvel) and acceleration-multi-
edges (facc) capture dynamic aspects. The distance between
an obstacle and its nearest configuration (in the example o1

and s1) is bounded from below by a minimal separation
that guarantees a collision free path. The obstacle location is
inferred from sensor data provided from the perceptual layer
within the robot’s architecture. The corresponding obstacle
is not subject to graph optimization and is illustrated by a
double circle in Fig. 2(a). A larger extract of the TEB hyper-
graph with respect to most of the implemented objective
functions is illustrated in Fig. 2(b). The objective function
in each multi-edge is represented in the overall objective
function according to its weight. In addition to the fixed
obstacle node, the way-point configurations p and the initial
state s0 are fixed, too. In our application we use the planner
in the control loop, so the initial state is given by the robot’s
current configuration.

C. Control flow

Fig. 3 shows the control flow of the implemented TEB.
In the initialization-phase an initial path is enhanced to
an initial trajectory by adding default timing information
respecting the dynamic and kinematic constraints. In our
case the initial trajectory is composed of piecewise linear
segments with a pure rotation followed by a translation. Such

Insert/delete
TEB states

Initialization

Path

Associate TEB states with 
waypoints/obstacles

Generate hyper-graph

Optimize hyper-graph

Calculate control variables

Robot
& 

Environment

Re-Initialization

{zj}

B(Q,τ)

B(Q,τ)

Obstacles

Mapping

Hyper-graph

B*(Q,τ)

B*(Q,τ)

B(Q,τ)

v,ω

Odometry

Trajectory m
odification

B(Q,τ)

Verify trajectory

B*(Q,τ)

Possible?:
Yes/No

Fig. 3. Control flow of TEB-implementation

a path representation in terms of a polygon is commonly
provided by probabilistic roadmap planners [22].

At each trajectory modification step, the algorithm dy-
namically adds new configurations or removes configurations
in order to adjust the spatial and temporal resolution to
the remaining trajectory length or planning horizon. The
most recent robot perceptions of obstacles and way-points
are associated with TEB states. Notice, incorporating an
obstacle motion model (e.g. constant velocity) by finding the
minimal spatial-temporal distance between TEB and obstacle
prediction instead of using the actual pose measurement often
leads to a more intuitive solution. In order to challenge our
planner and to analyze how it copes with novel perceptions
of obstacles at real time we consider obstacles as static in
the experiments in section IV. An extension of our approach
to dynamic obstacles is straightforward. The optimization
problem is transformed into a hyper-graph and solved with
the g2o-framework described in more detail in the following
section. The g2o-framework optimizes the TEB in batch
mode, therefore a new graph is generated at every iteration
and initialized with the recent solution. We recommend to
perform multiple iterations of the trajectory modification step
during a single robot control cycle (in our case four loops
including five Levenberg-Marquardt iterations each loop).

The optimized TEB is verified for the violation of hard
constraints in which case the robot either stops or the motion
planner is reinvoked. Upon successful verification the control
variables v and ω are calculated according to the immediate
next configuration in the TEB and sent to the robot as motion
commands. Prior to every modification, the re-initialization-
phase checks for new or modified way-points which is useful
if way-points do not originate from a static map but are rather
perceived as landmarks from a robocentric perspective with
an on board camera or laser scanner.



III. G2O GRAPH OPTIMIZATION

g2o has been developed to solve nonlinear optimization
problems with the following particular structure [19]:

F(x) =
∑

k=〈i,j〉∈C

ek(xi,xj , zij)
TΩkek(xi,xj , zij)︸ ︷︷ ︸
Fk

(6)

x∗ = min
x

F(x) (7)

x denotes the parameters to be optimized, zij denotes the
constraint between the two parameter blocks xi and xj and
Ωk represents the information matrix of the constraint. The
vector ek(xi,xj , zij) provides the error between constraint
and parameters. Notice, that (6) is the objective function
typically employed in nonlinear least squares optimization.

The preparation of the TEB-problem for optimization with
g2o-framework, see (4), proceeds according to (6). x is
substituted with the TEB-tuple B. In case of scalar error
terms, Fk simplifies to Fk = Ωke

2
k, with the substitutions

Ωk = γk and ek =
√
fk (using (4)). Note that for trajectory

optimization the parameter xi in (6) is given by the TEB-
State (si,∆Ti) in (3).

The g2o-framework requires the definition of nodes and
edges. Table I provides an overview of the nodes of the TEB.
bi denotes the position vector [xi, yi]

T . For each node, an
increment is defined, which maps the local parametrization
of the variable to its initial value. In case of incrementing the
orientation, the angle is normalized to the interval [−π, π)
after addition of the incremental rotation to the previous ori-
entation. The remaining variables are expressed in Euclidean
coordinates, therefore simple addition suffices.

TABLE I
OVERVIEW OF THE NODES OF TEB

Variable Symbol Parametriz. Increment
Position bi ∈ R2 (∆xi ∆yi) bi + ∆bi

Orientation βi ∈ R ∆βi normAngle(βi + ∆βi)
Time diff. ∆Ti ∈ R ∆T ∗

i ∆Ti + ∆T ∗
i

The g2o-framework requires the definition of the error
function ek =

√
fk and the weight Ωk = γk for the

configuration of each multi-edge. In the experiments pre-
sented in this paper, the Jacobian of the error function ek

in (6) is calculated by numerical approximation by the g2o-
framework. In future work it is possible to supply derivatives
in analytical form to increase the efficiency of optimization.

Equation (7) is solved with the Levenberg-Marquardt
method [19]:

(H + λI)x∗ = −b (8)

H =
∑

JT
k ΩkJk denotes the system matrix (Hessian), λ

is a damping factor which is automatically chosen by the
g2o-framework. x∗ represents the optimal TEB-states and
b =

∑
eT
k Jk the error term. Jk denotes the Jacobian which

is obtained from linearization at the current solution. An
important property of the TEB is the sparseness of H.

Fig. 4(a) illustrates an example of the TEB system matrix
H. It is sparse with only 15 percent of non-zero elements.

(a) Example system matrix
of TEB

(b) TEB system-matrix after
element ordering (AMD)

Fig. 4. System matrix and AMD ordering

In this example, the first 141 states correspond to the 47
configurations xi whereas the final states 142-189 denote
the time differences ∆Ti. These final states are related to
the objective of fastest trajectory, thus this block is dense
and connections grow quadratically with the dimension of
the TEB.

Equation (8) is solved in a numerically efficient way by
means of sparse Cholesky decomposition algorithms and a-
priori ordering (e.g. AMD, Fig. 4(b)) [20], [21]. The g2o-
framework provides two different solvers based on Cholesky
decomposition: CHOLMOD and CSparse. In first experi-
ments, the two solvers show no significant difference in terms
of the runtime behavior of the optimization. The CSparse
solver seems to be slightly faster, thus the experiments in
this paper are based on CSparse. It remains unclear which
solver is better suited for substantially higher dimensional
spaces ([19] prefers CSparse for smaller dimensions and
CHOLMOD for higher ones).

IV. EXPERIMENTS AND RESULTS

Simulation and real experiments focus on a non-holonomic
robot with a differential drive. The robot simulator is a virtual
machine running with Intel Core i7 2x2.3GHz and 4GB
RAM. Real robot experiments are performed on a Pioneer
2 with a Siemens Lifebook s6410, Core2Duo, 2.4GHz, 2GB
RAM. The robot is equipped with a Hokuyo Laser Scanner.

The solutions are robust with respect to the selection
of weights for the proposed objectives in the optimization
problem. We set the nonholonomic constraint to 1000 and
all other weights to 1.

A. Simulation experiments

Obstacle

(a) Snapshot 1

Obstacle

(b) Snapshot 2

Fig. 5. Obstacle avoidance (1 square = 1 m2)

In mobile robot navigation the avoidance of collisions is
an essential task. In order to accomplish obstacle avoidance
for dynamic obstacles the runtime of the TEB is analyzed
in an appropriate scenario. Fig. 5 shows two snapshots of



the trajectory modification with the TEB, while an obstacle
deforms the original trajectory to the left from the perspective
of the robot.

The average runtime of one single trajectory refinement
cycle (see Fig. 3) in scenario of Fig. 5 is 2.1 ms ± 0.4 ms.
During the entire simulation of 1000 cycles the obstacle
moves back and forth towards the TEB. The computation
time remains constant and is not affected by the dynamic
obstacle.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t [s]

v 
[m

/s
]

 

 

Right wheel
Left wheel

(a) Velocity profile

0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t [s]

a 
[m

/s
2 ]

 

 

Right wheel
Left wheel

(b) Acceleration profile

Fig. 6. Velocity and acceleration profile of snapshot 2

The (green) vectors in Fig. 5 represent the translational
velocity of the two wheels of the differential drive robot.
The velocity and acceleration profiles of each wheel are
shown in Fig. 6. The trajectory satisfies the constraints on
the maximum velocity limited to 1.4 m

s and the maximum
acceleration limited to 0.3 m

s2 .

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

R
u
n
ti
m

e
 p

e
r 

T
E

B
 C

y
c
le

 [
s
]

TEB Dimension

(a)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 T

o
ta

l 
C

o
s
t 
(1

2
 T

ra
je

c
to

ri
e
s
)

Elapsed Time [s]

 

 

TEB
STOMP

(b)

Fig. 7. (a) Runtime per TEB-Cycle for increasing dimension of TEB and
(b) Total cost of 12 trajectories over elapsed time (scaled to [0..1])

Another important performance aspect is the dependency
of the average runtime per iteration on the dimensions of the
TEB which grows linear with the number of configurations.
This relationship is analyzed by increasing the number of
configurations (higher density) in the very same scenario.
The results are illustrated in Fig. 7(a). For more than 10000
states, corresponding to approx. 2500 configurations, at a
path length of approx. 5 m the runtime exceeds the robot
control cycle of approx. 20-30ms. However, in realistic
applications the spatial-temporal resolution of the trajectory
is significantly lower, because refinements of the initial
trajectory only make sense within a look ahead distance of
a few meters that equals the robots perceptual range.

A larger scenario composed of two static obstacles and
four intermediate way-points is illustrated in Fig. 1(b). The
trajectory satisfies all of the formulated constraints.

Fig. 8 demonstrates the power and efficiency of the pro-
posed sparse model in combination with the g2o-framework.

Obstacle

Obstacle

Obstacle

Obstacle

Start Goal

(a) Initialization

Obstacle

Obstacle

Obstacle

Obstacle

Start Goal

(b) TEB: Optimization result

Obstacle

Obstacle

Obstacle

Obstacle

Start Goal

(c) STOMP: Optimization result

Fig. 8. Optimization of 12 different trajectories

Twelve initial trajectories, shown in Fig. 8(a), are optimized
in real-time in order to select the best candidate (e.g. with
respect to optimization costs). The trajectory modification
cycle (see Fig. 3) is executed in different threads on the
simulation system. The two first iterations of TEB to reduce
the cost of the initial trajectories to the near optimal ones
shown (Fig. 8(b)) require 218 ms (see Fig. 7(b)). Every
subsequent iteration with randomly moving obstacles only
require 48 ms ± 4 ms. Note, that the trajectories are much
longer than in the previous scenario in Fig. 5.

As a benchmark, the computational effort of TEB is
compared with STOMP ([16]) in the same scenario (Fig. 8).
STOMP is originally formulated for robotic arms, therefore
the joint variables to be optimized are replaced by the planar
state x and y. Notice, that STOMP does not depend on gradi-
ent information or requires differentiable objective functions.
In contrast, the g2o-framework approximates gradients nu-
merically and requires differentiable objective functions. Our
STOMP implementation employs twenty random trajectory
roll-outs to perform an update step.

The implementation contains the proposed acceleration
matrix in combination with the obstacle cost function. Origi-
nally, STOMP aims to achieve a collision-free trajectory and
not necessarily a fast one. Obviously, this is not sufficient
for motion planning of mobile robots. It would be possible
to extend STOMP by additional states and objectives. How-
ever, even the basic STOMP-2D implementation that only
considers collision free path is outperformed by the TEB.

Figure 8(c) shows the optimization result for all 12 initial
trajectories with STOMP. Each trajectory is composed of
80 2D-points which corresponds to the average number of
configurations in each TEB (TEB uses dynamical resizing).
The fixed number of configurations in combination with the
weight of the acceleration matrix influences the task duration.
For different scenarios, the weights have to be adjusted
(see longer trajectories in Fig. 8(c)). With the proposed
objective functions, our STOMP implementation fails to
handle discontinuous initial trajectories which TEB mostly



manages. The runtime is compared to TEB in Fig. 7(b).
The TEB performs the optimization significantly faster than
STOMP. Note, the STOMP parameters are intuitively chosen
such that they are largely comparable with TEB for the
2D case. In addition, we also implemented a 2D-version of
CHOMP (without Hamilton Monte Carlo) for comparisons,
but the obtained results are not robust in the above scenarios
for a sufficient spatial resolution.

B. Robot experiments

dyn.
obstacle

(a) t ' 0 s (b) t ' 6 s (c) t ' 11 s (d) t ' 16 s

Fig. 9. Avoiding a dynamic obstacle by real time adaptation of the TEB

The augmentation of elastic bands with temporal infor-
mation and the use of g2o-framework allow for real-time
trajectory adaptation and control of the robot. Fig. 9 shows a
sequence of snapshots from a real robot experiment in which
a person walks through the scene (similar to the previous
simulated scenario with one obstacle). The TEB adapts the
original robots trajectory (t = 0) in real time and avoids
an imminent collision with the person during the interval
t ∈ [6, 12] by deforming the original trajectory away from
the obstacle.

V. CONCLUSION AND FURTHER WORK

This paper presents numeric aspects of the implementation
of a real-time trajectory modification with TEB focusing on
the implementation with the g2o-framework. The innovation
of the TEB is to augment the classical elastic band with
temporal information. Therefore it is possible to not only
consider geometric and kinematic constraints with respect
to the path but to simultaneously account for dynamic
constraints of the mobile robot. g2o provides algorithms
and solvers for sparse system structures. We demonstrated
in this paper that the TEB exhibits such a sparse system
structure and that it is therefore efficiently solved by the g2o-
framework. The algorithm operates in real-time and thereby
directly generates commands for the underlying robot motion
controller. The method is highly flexible and is easily adapted
to different robot kinematics and application requirements.

Future work is devoted to further improvements of the
runtime. The first means is to provide analytical Jacobians
to the optimization algorithm. The second is to re-use the
a-priori ordering of the sparse TEB system-matrix from one
optimization cycle to the next. The third is to dynamically
adapt the resolution of the TEB both in time interval length
and in degree of detail of the model according to the planning
horizon. For the purpose of robot motion control, only the
next few states are relevant, hence remote configurations in
the far future are planned on a coarser scale.

A more fundamental change to the approach is to switch
to a sparse constrained optimization framework. This renders

the current formulation of constraints in terms of penalty
functions obsolete.

ACKNOWLEDGMENT

This work has been funded by the ARTEMIS Joint Under-
taking as part of the project R3-COP and from the German
Federal Ministry of Education and Research (BMBF) under
grant no. 01IS10004E.

REFERENCES

[1] S. M. LaValle, ”Planning Algorithms”. Cambridge University Press,
Cambridge, U.K., 2006.

[2] S. Quinlan, O. Khatib, ”Elastic Bands: Connecting Path Planning and
Control”, in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 802-807, 1993.

[3] S. Quinlan, ”Real-time modification of collision-free paths”, PhD
thesis, Stanford University, 1994.

[4] M. Khatib, ”Sensor-based motion control for mobile robots”, Labora-
toire d’Automatique et d’Analyse des Systèmes LAAS-CNRS, 1996.

[5] M. Khatib, H. Jaouni, R. Chatila, J. P. Laumond, ”Dynamic Path
Modification for Car-Like Nonholonomic Mobile Robots”, in Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), 1997.

[6] B. Graf, J. M. H. Wandosell, C. Schaeffer, ”Flexible Path Planning for
Nonholonomic Mobile Robots”, Fraunhofer Institute Manufacturing
Engineering and Automation (IPA), 2001.

[7] O. Brock, O. Khatib, ”Executing Motion Plans for Robots with Many
Degrees of Freedom in Dynamic Environments”, in Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), pp. 1-6, 1998.

[8] F. Lamiraux, D. Bonnafous, O. Lefebvre, ”Reactive path deformation
for nonholonomic mobile robots”, in IEEE Transactions on Robotics,
Vol. 20, No. 6, pp. 967-977, 2004.

[9] H. Kurniawati, T. Fraichard, ”From path to trajectory deformation”,
IEEE/RSJ Intl. Conference on Intelligent Robots and Systems (IROS),
pp. 159-164, 2007.

[10] V. Delsart, T. Fraichard, ”Reactive Trajectory Deformation to Navigate
Dynamic Environments”, in Proc. of the Second European Robotics
Symposium (EUROS), Vol. 44, pp. 233-241, 2008.

[11] B. Lau, C. Sprunk, W. Burgard, ”Kinodynamic Motion Planning
for Mobile Robots Using Splines”, IEEE/RSJ Intl. Conference on
Intelligent Robots and Systems (IROS), pp. 2427-2433, 2009.

[12] C. Sprunk et al. ”Online Generation of Kinodynamic Trajectories for
Non-Circular Omnidirectional Robots”, in Proc. of the IEEE Intl.
Conference on Robotics and Automation (ICRA), pp. 72-77, 2011.

[13] C. Sprunk et al., ”Improved Non-linear Spline Fitting for Teaching
Trajectories to Mobile Robots”, in Proc. of the IEEE Intl. Conference
on Robotics and Automation (ICRA), pp. 2068-2073, 2012.

[14] J. Mattingley, Y. Wang, S. Boyd, ”Receding Horizon Control: Auto-
matic Generation of High-Speed Solvers”, in IEEE Control Systems
Magazine, Vol. 31, No. 3, pp. 52-65, 2011.

[15] N. Ratliff et al. ”CHOMP: Gradient Optimization Techniques for
Efficient Motion Planning”, in IEEE Intl. Conference on Robotics and
Automation (ICRA), May 2009.

[16] M. Kalakrishnan et al. ”STOMP: Stochastic trajectory optimization
for motion planning”, in IEEE Intl. Conference on Robotics and
Automation (ICRA), pp. 4569-4574, May 2011.

[17] C. Rösmann et al. ”Trajectory modification considering dynamic
constraints of autonomous robots”, in Proceedings of the 7th German
Conference on Robotics (ROBOTIK 2012). May 2012.

[18] K. Konolige, ”Sparse Bundle Adjustment”, in F. Labrosse et al.,
editors, Proc. of the British Machine Vision Conference, pages 102.1-
102.11. BMVA Press, September 2010.

[19] R. Kümmerle et al., ”g2o: A general framework for graph optimiza-
tion”, in Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), Shanghai, China, May 2011.

[20] P. R. Amestoy, T. A. Davis, and I. S. Duff, ”Algorithm 837: Amd, an
approximate minimum degree ordering algorithm.”, in ACM Trans.
Math. Softw. vol. 30, pp. 381-388, September 2004.

[21] Y. Chen et al., ”Algorithm 887: Cholmod, supernodal sparse cholesky
factorization and update/downdate”, in ACM Trans. Math. Softw. vol.
35, pp: 22:1-22:14, October 2008.

[22] L. E. Kavraki et al., ”Probabilistic roadmaps for path planning in high-
dimensional configuration spaces”, in IEEE Transactions on Robotics
and Automation, Vol. 12, No.4, pp.566-580, August 1996.


