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Model Predictive Trajectory Set Control with Adaptive Input Domain
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Abstract— From a theoretical point of view, model predictive
control (MPC) promises a high control quality since the
future system performance is predicted and evaluated in every
sampling interval. Additionally, desired optimization objectives
can be realized while explicitly adhering to state and control
input constraints. This control concept has the potential to set
a new standard in industrial applications. In practical terms,
functioning and properties of online optimization algorithms
must be familiar to the developer to adjust the control perfor-
mance of a mechatronic system. Moreover, it is challenging
to realize a computationally expensive control concept for
mechatronic systems with fast dynamics due to the limited
computing power. It is worth mentioning that industrial systems
usually exhibit hardware with low computing power. This
contribution presents the model predictive trajectory set control
(MPTSC) that constitutes a sub-optimal MPC with a sparse
discretization of the control input domain. The optimal control
input is determined without the use of iterative optimization
techniques. To mimic quasi-continuous control input values
similar to MPC, an adaptive input domain discretization is
developed. MPTSC includes most advantages of MPC and is
still computationally efficient. The implementation is less com-
plex and error-prone and thus addresses especially industrial
applications. The performance and the computation time are
evaluated in comparison to MPC with nonlinear benchmark
systems. Furthermore, the approach is tested experimentally
on an industrial plant emulator with a sample rate of 100 Hz.

I. INTRODUCTION

The control task of mechatronic systems in industrial
applications is usually performed with cascaded control ar-
chitectures based on PID controllers. They are widely applied
due to their well-studied theory and moderate computational
effort [1]. To enhance the closed-loop performance and to
meet all the specified requirements for strongly nonlinear
systems, classic PID controllers are extended with nonlinear
characteristic curves for the integral and proportional am-
plification. Thus, the controller adapts the parameters as a
function of the control error e(t). With an increasing number
of parameters, higher demands on the control performance
can be satisfied. However, since the complexity increases,
the parameterization becomes a challenging process. Param-
eterization is either carried out by a process expert with
a high time expenditure or an automated Hardware-in-the-
Loop meta optimization by applying multi-criteria evolu-
tionary algorithms [2]. However, the control performance
of classic control concepts is limited since no respectively
vague information about the possible future system evolution
is considered during runtime. Moreover, state and control
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input constraints are only implicitly taken into account. The
ability to operate close to the system’s physical constraints
is limited.

Model predictive control (MPC) predicts the future system
evolution and minimizes a user-defined but usually smooth
objective function during runtime. It repeatedly solves an
optimal control problem over a moving finite horizon in
each sampling interval [3]. Consequently, a high control
performance can be achieved. The prediction process uses
a dynamic plant model. It is to be emphasized that MPC
explicitly adheres to state and control input constraints.
However, solving an optimal control problem in every sam-
pling interval requires a high computing power which is
usually not available in current industrial applications. Thus,
researchers focus on developing numerical efficient realiza-
tions and approximations of MPC. In [4] a multiple-shooting
method is presented which exhibits faster convergence prop-
erties compared to single-shooting. The real-time iterations
scheme further reduces computation time by only performing
a warm-started single sequential quadratic programming step
in each sampling interval [5]. A combination with first-order
methods for embedded MPC applications is presented in [6].
Further methods efficiently deal with sparse interior-point-
methods [7], [8] or projected gradients [9]. Time-optimal
MPC is realized in [10], [11].

To further reduce the computational burden of MPC, sub-
optimal solutions are obtained with move-blocking strategies
in which the number of control interventions along the
horizon is limited [12]. Concerning the available degrees of
freedom, this strategy reduces the dimension of the optimiza-
tion problem and hence the computation time but also leads
to slower control performance. In extreme cases, a single
degree of freedom and thus a constant control input over the
entire prediction horizon is considered for optimization.

In the context of power electronics, MPC has also been
introduced successfully although high sampling rates are
required [13], [14]. The finite control set MPC (FCS-MPC)
makes use of the limited number of possible switching states
and thus operates quickly. The optimal switching states of
a converter are the optimization variables which can be set
as active directly after solving the optimal control problem.
A modulator which converts a continuous signal into corre-
sponding switching states is not required. An extreme move-
blocking strategy is not applied since the switching states are
responsible for a rotating magnetic field.

Model predictive trajectory set control (MPTSC) re-
duces the complexity of a controller significantly and ad-
dresses mechatronic systems with fast dynamics in particular.
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MPTSC has its origin in the development of an emergency
steering assist. The model predictive trajectory set approach
(MPTSA), developed for emergency maneuvers of vehicles
in critical traffic situations, combines the planning and con-
trol of a collision avoidance trajectory in a single step [15].
In contrast to MPTSA, MPTSC is meant to be a tracking
controller. MPTSC mimics the move-blocking strategy and
makes use of the advantages of FCS-MPC. In [16], MPTSC
has proved its applicability for a fast-acting hydraulic valve.
The basic idea of MPTSC is to discretize the control input
domain sparsely. Every available input candidate is kept
constant over the entire prediction horizon. Thus a discrete
set of trajectory candidates is predicted in every sampling
interval. The control input of the trajectory with the smallest
objective function value is selected and applied for control.
Note, this concept exhibits the advantageous characteristics
of predicting the plant’s future behavior during runtime
similar to conventional MPC. However, a gradient-based
algorithm for solving the optimal control problem is not
required. MPTSC is not meant to replace MPC in general, in
fact it is well known from the theory of MPC that short hori-
zons respectively less control interventions cannot stabilize
every system with arbitrary constraints [17]. However, for
small- to mid-scale system models with only a few control
input variables and bounds on states and controls, MPTSC
outperforms MPC regarding computational efficiency and
simplicity. This approach is suitable especially in the case
of stable open-loop dynamics. These particular systems
mentioned before typically arise in mechatronic applications.
Electromagnetic actuator dynamics and mechanical motions
are usually defined in terms of a second or third order
system of differential equations with a nonlinear character.
Consequently, MPTSC intends to address a wide range of
these mechatronic systems. MPTSC is suitable to replace
complex native controllers in cascaded control structures.
In this case, the number of input candidates to be tested
is manageable without the use of further search algorithms
like in [18]. The execution time is deterministic since the
number of required computations is known in advance.

To achieve a nearly optimal closed-loop performance
with the (sub-optimal) MPTSC, the basic concept needs to
be extended with an adaptive discretization strategy. The
contribution of this paper is to demonstrate that MPTSC
with an adaptive input domain discretization requires just a
couple of trajectory candidates to mimic the optimal control
performance of the MPC with a control horizon nc = 1.
MPTSC with an adaptive discretization does not result in
a noticeably higher computation time compared to a linear
discretization since only a functional mapping is performed.

The next section describes MPTSC and introduces the
adaptive input domain discretization in detail. Section III
provides a performance comparison with MPC (with nc = 1)
for two nonlinear benchmark systems which incorporate a
wide range of mechatronic characteristics. For experimental
validation the industrial plant emulator with a sampling rate
of fs = 100 Hz is utilized in section IV. Finally, section V
summarizes the results and provides an outlook.

II. MODEL PREDICTIVE TRAJECTORY SET
CONTROL

Fundamental Formulation

In this contribution, a single-input system is investigated.
The discrete state equations with p states and a single input
are obtained by finite-differences and sample time ∆T :

xk+1 = xk + f(xk, uk) ∆T, xk=0 = x0. (1)

Thereby, xk ∈ Rp denotes the state vector at time instance k
and uk ∈ R the corresponding control input. Control inputs
are further limited by the following box constraint:

umin ≤ uk ≤ umax. (2)

For the optimal control problem, the control input domain R
is discretized such that Ak ⊂ R and u ∈ Ak. The
(sub-)optimal control input u∗k is obtained as follows:

u∗k = arg min
u∈Ak

J(xk, u) (3)

subject to (1), (2) and the state box constraints

xmin ≤ xk ≤ xmax. (4)

At every time step k, the implicit control law is defined
as uk = u∗k. The control input is kept constant over the
prediction horizon tp with nc = 1. To solve the optimal
control problem in (3) a set of trajectory candidates is
predicted by applying the possible control inputs u ∈ Ak.
The trajectory candidates are evaluated with the objective
function value J(·). The candidate that exhibits the least
objective function value is selected, and the corresponding
input u∗k is applied to the plant. It is important to emphasize
that the requirements on J(·) are fairly mild when utilizing
the MPTSC since no gradient-based optimization is required.
Non-smooth cost functions might be utilized depending on
the actual application.

Adaptive Input Domain Discretization

In the case of a sparse equidistant (or linear) discretization
of the input domain the available input candidates are defined
as follows:

ulin ∈ D := {umin, umin + ∆u, umin + 2 ∆u, ..., umax} (5)

Since the number of inputs is finite, the MPTSC leads
to a undesired performance. If the discretization step size
∆u is not small enough, the controller has to switch the
input frequently. According to the system’s steady-state, the
equidistant discretization only addresses systems without
self-compensation since ∆u can be adjusted such that the
zero input is in the linear set D. To smooth the control
interventions and to reach every possible steady-state of
systems with self-compensation, an adaptive input domain
discretization is developed. The idea is to find a function
which maps the linear discretized inputs to a nonlinear
representation in order to achieve a fine discretization in
the proximity of the previous input uk−1. Consequently, the
mapping is performed adaptively in order to seek for a quasi-
continuous input range. In this contribution, polynomial

3



functions are designed according to various conditions. To
ensure that the box constraint in (2) is not violated a single
curve is described by two m-order polynomials with f(ulin) :
D→ Ak :

f(ulin) = u =

{
p1 u

m
lin + p2 ulin + p3, if ulin ≥ 0

p4 u
m
lin + p2 ulin + p3, if ulin < 0.

(6)

The set Ak changes in every sample step k with u ∈ Ak. The
polynomials are parameterized according to the conditions:

f(umax) = umax, f(umin) = umin,

f(0) = uk−1, f
′(0) = α.

(7)

The variable α describes the desired slope in
(
0, uk−1

)
. In

this contribution, α is set to zero. However, it is conceivable
to adapt α depending on the control error e(t). The poly-
nomial order is set to m = 3. Figure 1 shows the adaptive
mapping for three different previous values uk−1. The linear
gray curve represents the parameter set α = 1 and f(0) = 0
and would deactivate the adaptive discretization.

III. SIMULATIVE ANALYSIS OF THE MPTSC

The simulative analysis is performed with a zero model
mismatch. Thus, the plant and prediction model are identical
and are solved numerically using the explicit Euler method
with a dedicated step size ∆T = 0.01 s. For small time steps
∆T the following numerical approximation of the chosen
objective function is adequate:

J(x, u) =

t=tp∫
t=0

(
(x̂− xf)

ᵀQ (x̂− xf)
)

dt

J(xk, u) ≈ ∆T

l=np∑
l=1

(
(x̂k,l − xf,k)ᵀQ (x̂k,l − xf,k)

) (8)

with x̂k,0 = xk and reference target state xf . The index k
denotes the runtime sampling and the index l the time
steps on the prediction horizon. The matrix Q denotes at
least a quadratic positive semi-definite weight matrix for the
penalization of the state error x̂ − xf . The global control
task is the transition between the initial states x0 and the final
states xf . The first set-point state xref is defined as a function
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Fig. 1: Adaptive discretization of the control input domain
applying polynomial functions with umin = −1, umax = 1.

of time to provide a step sequence. Note, during prediction
the sampled reference states xf,k are treated as constant over
the prediction horizon since the future course of the reference
is not known in advance in this contribution. To provide an
absolute closed-loop reference performance, a classic MPC
with an extreme move-blocking strategy, nc = 1, is utilized.
In this case the optimal control input u∗k is obtained as:

u∗k = arg min
u∈R

J(xk, u) (9)

subject to (1), (2) and (4). The optimal control problem is
solved by the iterative algorithm IPOPT [19]. IPOPT applies
the interior point method for sparse nonlinear programs and
provides warm starts. IPOPT is configured to reach conver-
gence in every sampling interval. The remaining settings are
the same for both control concepts. HSL-MA57 is utilized
as internal linear solver [20]. For a comparative analysis of
the MPC and MPTSC regarding the control performance the
following merit function is applied:

NRMSE = 100 %

(
‖yMPC − yMPTSC‖2

(yMPC,max − yMPC,min)
√
n

)
.

(10)
The vector y denotes a chosen state signal for comparison
with n elements. In this contribution, the performance is
evaluated concerning conventional design criteria for mecha-
tronic systems like rise time, settling time and overshoot
characteristic. The weights in Q and the prediction horizon
tp are tuned manually. Since the control horizon is set to
nc = 1, the prediction horizon tp becomes a controller
parameter which has an impact on the dynamics of the
closed-loop performance. Hence, a terminal cost as typically
applied in literature [17], (x̂k,np

− xf,k)ᵀS(x̂k,np
− xf,k),

to approximate the cost for an infinite horizon and ensure
stability according to the Riccati equation is omitted in (8).
For the comparison of computation times, a further hard
constraint solver is used. The sequential programming ap-
proach SQP is realized using qpOases [21] and backtracking
linesearch according to a `1 merit function [22]. Both IPOPT
and SQP are limited to a single optimization iteration in
every sampling interval to reach short computation times.
Computations are performed in C++ (PC: 3,4 GHz Intel i7-
6700 CPU, Ubuntu). The open-loop results are evaluated by
ten initial (k = 0) optimization problems. The closed-loop
results are evaluated by three entire simulations.

Van-der-Pol Oscillator

The fast and precise control of the Van-der-Pol Oscillator
is a challenging task. This system provides a common
benchmark in the MPC literature. It is an oscillatory dynamic
system with nonlinear damping and self-compensation. The
second order differential equation is defined by:

ẍ+
(
x2 − 1

)
ẋ+ x = u. (11)

Transforming this equation into a state space representation
with state vector x = [x, ẋ]ᵀ = [x1, x2]ᵀ results in a second
order continuous-time system:

ẋ = f(x, u) =
[
ẋ, −

(
x2 − 1

)
ẋ− x+ u

]ᵀ
. (12)
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The input variable is limited to |u| ≤ 1 and the box constraint
|x2| ≤ 0.3 is set as active. The weight parameters of the
Matrix Q are set to q11 = 1, q22 = 0.2, q12 = q21 = 0 and
tp = 0.5 s. The reference vector is xf = [xref , 0]ᵀ. For a more
detailed illustration of the functionality respectively the open-
loop performance of MPTSC the set of predicted trajectories
of the first state x1 is depicted for multiple control sampling
intervals in Figure 2. Figure 3 shows the simulated closed-
loop performance for this nonlinear system. Both the MPC
and the MPTSC illustrate the ability to adhere to constraints.
Moreover, this evaluation reports the potential for improve-
ment of the sub-optimal characteristic of the basic MPTSC
when utilizing the adaptive input domain discretization. The
subset Ak in every time step k consists of 11 possible input
candidates regardless of the discretization method. The lack
of smoothness of the control input uk of the MPTSC with
linear input domain discretization leads to a rather damped
performance during the transition phase and an oscillation
around the steady-states. The performance of the MPTSC
with an adaptive input domain discretization results only in
a slight deviation from the MPC. In Figure 4 the deviation of
the MPTSC performance from the optimal MPC performance
over the number of input candidates is presented. When
utilizing the adaptive input domain discretization, only a
small number of input candidates is needed to reach the
performance saturation and to approximate the optimal MPC
performance sufficiently well. Nonetheless, a minimum num-
ber of five input candidates is necessary. This fact addresses
real-time applications regarding mechatronic systems with
fast dynamics. The number of input candidates in set Ak
must be chosen according to the desired control quality
and available computational resources. However, recursive
feasibility and stability must be ensured. Theoretical stability
analysis is beyond the scope of this paper but generally,
the stability results of MPC with nc = 1 apply if the
control discretization is sufficiently small [17]. The analysis
of the computational effort can be extracted from Table I.
The renouncement of optimization algorithms leads to very
short computation times.

Industrial Plant Emulator ECP 220

This mechatronic system is designed to emulate automated
industrial processes and is shown in Figure 5. It allows an
advanced development of control and model identification
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Fig. 2: Predicted trajectories for six sampling intervals with
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Fig. 4: Deviation of the sub-optimal MPTSC from the
optimal MPC for the Van-der-Pol Oscillator.

concepts for mechatronic systems with comparable charac-
teristics. It is possible to modify the mechanical configuration
and therefore to manipulate the system performance. The
system consists of two load plates actuated by brushless DC
drives which are coupled via elastic transmission belts. The
drive angles can be measured with two incremental encoders.
An internal digital signal processor (DSP) provides the
angular velocity. Thus the system states can be determined
without the use of a model-based state observer. In this
contribution, the first motor provides the driving torque while
the second motor is not operated actively. To reach a high
level of nonlinear characteristic the more distant second
encoder is used as the measurement unit. The modeling
process is related to the axis where the second encoder
is located. The ECP model describes the system behavior
between the reference current (input) u and the position x1.
The present plant is highlighted in gray in Figure 5. This
model represents a system without self-compensation. The
second order differential equation is defined by:

J2 ẍ+ τc tanh(β ẋ) + d ẋ = 4 k1 u. (13)

The variable J2 = 3.39 · 10−2 Nm · s2 · rad−1 is the overall
load inertia in the second axis, k1 = 9.5 · 10−2 Nm · A−1
is the motor constant, τc = 9.39 · 10−2 Nm is the static fric-
tion torque and d = 1.93 · 10−2 Nm · s · rad−1 is a damping
constant. The discontinuous static friction representation is
approximated with a trigonometric function. The variable
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TABLE I: Van-der-Pol Oscillator computation times
Approach First open-loop Closed-loop

MPC with IPOPT (4133± 900) µs (855± 72) µs
MPC with SQP (1324± 107) µs (167± 43) µs

Adaptive MPTSC with 25 cand. (54± 8) µs (11± 6) µs
Adaptive MPTSC with 11 cand. (25± 2) µs (6± 3) µs

β = 5.37 s · rad−1 affects the approximation error of the
static friction model. Note, this approximation is applied for
both MPC and MPTSC to ensure a comparable analysis.
Nevertheless, MPTSC could trivially handle the non-smooth
version as well. Transforming equation (13) into a state space
representation with state vector x = [x, ẋ]ᵀ = [x1, x2]ᵀ

results in a second-order continuous-time system:

ẋ = f(x, u) =
[
ẋ, −

(
τc tanh(β ẋ)+d ẋ

)
J2

+ 4 k1 u
J2

]ᵀ
. (14)

The input variable, the electrical set-point current, is limited
to |u| ≤ 1 A and the box constraint |x2| ≤ 5 rad/s
is set as active. The free parameters are set to
q11 = 1, q22 = 0.006, q12 = q21 = 0 and tp = 0.1 s.
Figure 6 shows the simulated closed-loop performance
for this further benchmark system with zero model
mismatch. The reference vector is xf = [xref , 0]ᵀ. Figure 6
demonstrates the capability of the MPTSC to handle state
box constraints once again for the presented example
system. Figure 6 and Figure 7 have similar results as
Figure 3 and Figure 4. The subset Ak at every time step k
consists of 15 possible input candidates regardless of the
discretization method. The system performance differs
between these two evaluated benchmark systems. The
ECP system is a fairly inert system. Hence, the prediction
horizon can be chosen five times shorter as in the case of
the Van-der-Pol Oscillator. The error regarding the state
vector x in Figure 6 and Figure 7 of the MPTSC with a
linear input discretization reaches a level comparable to the
MPTSC with an adaptive input domain discretization. If
the frequent switching of the control input has no negative
impact on the system properties, the MPTSC with a linear
discretization can also be applied to meet the requirements
regarding the rise time, the settling time and the overshoot
characteristic. In Table II, the computation time of MPTSC
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Fig. 7: Deviation of the sub-optimal MPTSC from the
optimal MPC for the ECP model.

is significantly lower as the computation time of the MPC
(hard constraint solver with just one allowed optimization
iteration). The simulative analysis demonstrates promising
closed-loop performances and leads to ideal preconditions
to control a real system with mechatronic properties.

IV. EXPERIMENTAL RESULTS

Theoretical investigations usually assume zero model mis-
match. The model predictive control concepts focus on
solving the optimal control problem efficiently by utilization
of fast optimization techniques. In practice, a prediction
model does never exhibit a zero error. Moreover, as the model
accuracy increases the model becomes more complex. Thus,
the computational effort increases, too. Furthermore, state
estimation is performed by state observers or measurement
units with limited accuracy. MPC approaches with nc = 1
lead to a lower closed-loop performance in comparison to
MPC approaches with more degrees of freedom, especially in
the case of zero model-mismatch. However, these approaches
require iterative optimization algorithms. Section III demon-
strated that the MPTSC achieves similar performance com-
pared to MPC for two nonlinear systems. This section shows
its performance in a real closed-loop experiment. Figure 8
illustrates the closed-loop performance of the MPTSC and
the MPC for the ECP system close to the physical limits. Fur-
thermore, the simulation results indicate the influence of the
model mismatch, the encoder and DSP error. Both MPTSC
and MPC are invoked with a sampling rate of fs = 100 Hz.
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TABLE II: ECP model computation times
Approach First open-loop Closed-loop

MPC with IPOPT (3200± 753) µs (651± 102) µs
MPC with SQP (560± 48) µs (66± 33) µs

Adaptive MPTSC with 25 cand. (78± 9) µs (17± 10) µs
Adaptive MPTSC with 15 cand. (48± 2) µs (11± 7) µs

The adaptive MPTSC utilizes 21 input candidates. A closer
look at the experimental results reveals that the system is
initially operated at its maximum control bounds until state
bound |x2| ≤ 5 rad/s becomes active. In comparison, time-
optimal control would lead to slightly faster switches in the
control input sequence. However, the extra effort in terms of
implementing and setting up a real-time capable time-optimal
controller with continuous optimization methods might not
be justified from an industrial point of view.

V. CONCLUSIONS AND FUTURE WORK

The model predictive trajectory set control with an adap-
tive input domain discretization is presented in this pa-
per. Polynomial functions are designed to enable the adap-
tive selection of possible input candidates to achieve a
quasi-continuous input domain. Apparently, the sub-optimal
MPTSC reproduces the closed-loop performance of the op-
timal MPC with one degree of freedom on the prediction
horizon sufficiently well for different benchmark systems. At
the same time, it is less time-consuming and less complex to
implement without requiring any gradient-based optimization
algorithms. These advantages address industrial applications
in particular. In comparison to a classic nonlinear PID
controller, the complexity regarding the number of design
parameters can be reduced significantly. The experimental
results with an industrial plant emulator emphasize these
statements and demonstrate the superior closed-loop per-
formance concerning the defined control task. Although
MPTSC is less complex, it still integrates the systems state
prediction with state feedback subject to constraints. It has
thus shown to be suitable for replacing complex controllers
in existing control architectures.
Future work is concerned with further comparisons to model
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Fig. 8: Experimental closed-loop performance of the MPTSC
for the industrial plant emulator ECP 220.

predictive and alternative control concepts for a wider range
of benchmark systems. Furthermore, a major interest is the
theoretical analysis regarding stability and robustness.
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F. Allgöwer, “Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations,”
Journal of Process Control, vol. 12, no. 4, pp. 577–585, 2002.

[5] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
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