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Abstract— In practice, high quality control for mechatronic
systems is often achieved by augmenting classical control archi-
tectures like PID controllers with numerous tailored nonlinear
characteristic parameter curves and cascades. This complexity
can be significantly reduced by utilizing advanced model
predictive controllers (MPC). Furthermore, desired objectives
like minimum control error and effort can be realized while
explicitly adhering to state and control constraints. However,
MPC is subject to iterative gradient-based online optimization
algorithms which are computationally expensive. Hence, their
application to mechatronic systems with fast dynamics is
limited. It is worth mentioning that industrial systems often
utilize low cost computational hardware. Accordingly, this
contribution presents a model predictive trajectory set control
(MPTSC) scheme that mimics a sub-optimal MPC by a sparse
discretization of the control input domain. A comparative anal-
ysis with a linear quadratic regulator demonstrates its ability to
provide a sufficiently high control performance compared to the
optimal reference. Furthermore, the approach is experimentally
evaluated on a proportional directional control valve with
a sample rate of 10 kHz. In addition to its efficiency the
implementation of MPTSC is less complex and error-prone in
comparison to MPC which is a reasonable advantage especially
in industrial applications.

I. INTRODUCTION

For fast and precise control of mechatronic systems cas-
caded control architectures based on PID controllers are
widespread in current industrial applications mainly due
to their well-studied theory and their low computational
demands [1]. In order to comply with application spe-
cific requirements classic PID controllers are extended with
nonlinear characteristic curves for the integral and propor-
tional amplification. Parameters are adapted as a function
of the control error e(t) and a desired rigorous controller
performance is accomplished by increasing the number of
parameters. However, the parametrization of such a complex
controller is challenging. Either a process expert is needed
for manually parameterizing the process or an automated
hardware in the loop meta optimization can be utilized. For
instance multi-criterial evolutionary computation techniques
are applied in [2]. Nonetheless, the performance is limited
since the controller does not incorporate any (at least vague)
future knowledge about the possible evolution of the system
behavior during runtime. State and control input constraints
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are only implicitly taken into account by choosing appro-
priate parameters in advance and thus the ability to operate
close to the system’s physical limits is waived. In addition,
the simultaneous optimization of controller parameters and
structure is promising but very time-consuming [3]. Another
drawback is the possible over-fit of the controller structure
and its parameters since the range of evaluated excitation
signals is limited by practical reasons.

A suitable control concept for explicitly incorporating con-
trol and state constraints is model predictive control (MPC).
Model predictive controllers repeatedly solve an optimal con-
trol problem over a moving finite horizon in each sampling
interval [4]. Compared to PID control MPC predicts the
future evolution of the system based on a dynamic model
during runtime and achieves a higher control performance
in terms of minimizing a user-defined but usually smooth
objective function. However, solving such optimal control
problems is computationally demanding. Consequently, re-
searches started focusing on numerical efficient realizations
and approximations of MPC during the last years. Diehl et al.
present the multiple shooting approach as a direct solution to
the optimal control problem in contrast to indirect methods
based on calculus of variations [5]. Due to its tradeoff
between sparsity and dimension of the optimization problem,
multiple shooting turned out to converge faster than single
shooting. Furthermore, computation time is reduced by the
real-time iteration scheme which performs a single sequen-
tial quadratic programming iteration within each sampling
interval and warm-starts from previous solutions [6]. In [7]
the real-time iteration scheme is combined with first-order
methods for embedded MPC applications. Other methods
efficiently solve MPC problems with sparse interior-point-
methods [8], [9], applicate projected gradients for real-time
applications [10] or present code generation techniques for
application specific and sparsity exploiting MPC solvers.
Time-optimal MPC realizations for mechatronic systems are
presented in [11], [12]. In the context of approximating MPC
some publications deal with move-blocking strategies [13].
Hereby, the degrees of freedom in the control sequence are
reduced. The reduction of the dimension of the optimization
problem leads to faster but suboptimal solutions. In the ex-
treme blocking case, the control variable is kept constant over
the entire prediction horizon. For controlling mechatronic
systems with sample rates above fs = 1 kHz pre-computed
piecewise state-dependent control laws can be designed [14].
The explicit MPC solves the parametric optimal control
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problem for all feasible states offline and hence the online
tasks simplifies to the look-up operation. However, for large
problem formulations the required memory storage and look-
up time significantly increase due to the curse of dimension-
ality. Additionally, the offline computation must be repeated
whenever parameters need to be changed. In the context
of power electronics finite control set MPC (FCS-MPC)
profits from the property of a limited number of switching
states and thus can be executed quickly. The switching states
of a converter represent the optimization variables [15],
[16]. After the optimization the optimal switching states
are directly set as active. A modulator which converts a
continuous signal into corresponding switching states can
be dropped. However, usually a one-step prediction horizon
is used. A longer prediction horizon is not combined with
an extreme move-blocking strategy since the converter is
responsible for a rotating magnetic field.

In this paper we present a novel control concept suitable
for fast mechatronic systems which accounts for the benefits
of the classic MPC but also exhibits a low computational
burden and guaranteed real-time capability. The number of
computations in every control sample interval are well known
in advance. The MPTSC mimics the move-blocking strategy
and makes use of the advantages of FCS-MPC. The model
predictive trajectory set control (MPTSC) uses a sparse
discretization of the control input domain. Additionally, the
inputs are kept constant over the prediction horizon. In every
sampling interval a discrete set of trajectory candidates is
generated from which the best one is selected for actual
control. Hence, solving the optimal control problem with
iterative gradient-based optimization techniques is dropped.
The MPTSC approach is based on the idea of the model
predictive trajectory set approach (MPTSA) developed for
emergency maneuvers of vehicles in critical traffic situations
in [17]. The MPTSA combines the planning and control
of a collision avoidance trajectory in a single step. Due
to the existence of the environment model, a pre-calculated
reference signal is not necessary. In contrast to the MPTSA
the MPTSC is meant to be a tracking controller and considers
more general types of systems.

The contribution of this paper is to demonstrate that a sub-
optimal MPC approach is able to satisfy the requirements for
control quality of a mechatronic system while it reduces the
complexity essentially. The proposed approach constitutes an
application oriented solution. A hydraulic directional control
valve is used as a mechatronic system to point out the
applicability of the novel control concept. Such a valve is
characterized by distinct nonlinearities and the fast dynamics
require a sampling rate of fs = 10 kHz.

The next section describes the MPTSC in detail. In order
to analyze the performance of the MPTSC approach, a
comparison with the linear-quadratic regulator (LQR) is pro-
vided for a linear dynamic system in section II. A hydraulic
direction control valve is described in section III which is
later used for the experimental validation in section IV.
Finally, section V summarizes the results and provides an
outlook on further work.

II. MODEL PREDICTIVE TRAJECTORY SET
CONTROL

For the reminder of this paper a single-input system is
considered. The discrete state equations with p states and
a single input are obtained by finite-differences and sample
time ∆T :

xk+1 = xk + f(xk, uk) ∆T, xk=0 = x0. (1)

Hereby, xk ∈ Rp denotes the state vector at time instance k
and uk ∈ R the corresponding control input. Control inputs
are further limited by the following box constraint:

umin ≤ uk ≤ umax. (2)

For the optimal control problem, the control input domain R
is discretized such that A ⊂ R. In this paper an equidistant
discretization with step size ∆u is considered. The resulting
control inputs are defined as follows:

u ∈ A := {umin, umin + ∆u, umin + 2 ∆u, ..., umax} (3)

The (sub-)optimal control input u∗k is obtained as follows:

u∗k = arg min
u∈A

JM(xk, u) (4)

subject to (1), (3) and the state box constraints

xmin ≤ xk ≤ xmax. (5)

The implicit control law at time step k is now defined as
uk = u∗k. A control horizon of nc = 1 is chosen such
that the control variable is kept constant over the prediction
horizon tp. The optimal control problem in (4) is solved in
the manner that within each sampling interval ∆Ts a set of
trajectory candidates is predicted according to all possible
controls u ∈ A. The candidate with the least objective
function value JM(·) is chosen and the corresponding in-
put u∗k is applied to the plant. Note, the requirements on
JM(·) are fairly mild, since no gradient-based optimization
is performed. Non-smooth cost functions might be utilized
dependent on the application.

A. Simulative Analysis of the MPTSC – Setup

For the first evaluation of the control performance of the
MPTSC a linear dynamic system is used for both prediction
and plant simulation. Note, the linear model is chosen in
preparation for the dynamic directional control valve char-
acteristics presented in section III. The system is defined by
the following differential equation:

....
x = −a2

...
x− a1ẍ− a0ẋ+ b0u. (6)

Transforming this equation into a state space representation
with state vector x = [x1, x2, x3, x4]ᵀ = [x, ẋ, ẍ,

...
x]ᵀ results

in a fourth order continuous-time system:

ẋ = f(x, u) =


ẋ
ẍ
...
x

−a0ẋ− a1ẍ− a2
...
x+ b0u

 . (7)
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A plant without self-regulation is applied with intent. In case
of state regulator’s model mismatch the closed loop control
might exhibit a non-zero offset characteristic. A common
policy to achieve offset free tracking of the reference is to
augment the system with a virtual integrator [18]. Moreover,
for a sparse control input discretization the MPTSC might not
be able to perfectly reach the reference respectively steady-
state due to reduced degrees of freedom close the target state.
On this occasion, an augmented integrator addresses these
circumstances.

In the simulative analysis section, the model is numerically
solved with the Euler method according to (1). The formu-
lation accounts for a dedicated step size of ∆Te = 0.01 s
for the future state prediction in comparison to the closed-
loop sampling interval. Variable ∆TJM

denotes the time
interval between predicted states x̂k,l(u) := x̂l(xk, u) of
the objective function. The index k indicates the runtime
sampling and the index l indicates the steps during the
prediction. For small time steps ∆TJM

numerical integration
in objective function is performed by applying the explicit
Euler method:

JM(x, u) =

t=tp∫
t=0

(
(x− xf)

ᵀQM(x− xf) + rMu
2
)

dt (8)

JM(xk, u)≈∆TJM

l=np∑
l=1

(
(x̂k,l−xf)

ᵀQM(x̂k,l−xf)+rMu
2
)
.

with x̂k,0 = xk and reference target state xf . In this con-
tribution the step intervals are set to ∆TJM

= ∆Te = 0.01 s.
QM denotes at least a quadratic semi-definite weight matrix
for the penalization of the state error x − xf and rM is a
scalar weight for penalizing the control effort.

The continuous-time linear-quadratic regulator (LQR) with
an infinite horizon provides an optimal reference if the
quadratic objective function

JL =

∞∫
0

(
(x− xf )ᵀQL(x− xf ) + rLu

2
)

dt (9)

subject to the linear system dynamics ẋ = Ax+bu is used
(u ∈ R). The control law in analytical form is

u∗L = −k (x− xf) (10)

where k is given by

k = rL
−1(bᵀP) (11)

and the algebaric Riccati equation

AᵀP + PA− (P b) rL
−1(bᵀP) + QL = 0 (12)

must be solved with respect to P. The LQR does not support
any state and control constraints and exhibits at least a
positive semi-definite diagonal matrix QL and rL > 0. The
overall control task is the transition between the initial states
x0 and the final states xf = [xref , 0, 0, 0]ᵀ. The first state xref
is defined as a function of time to mimic a step sequence.
Note, in the remainder of this contribution, the controllers

are not aware of future switching modes in xref . Hence,
they keep the sampled final state constant over the prediction
horizon at each sampling interval. For a comparative analysis
of the LQR and MPTSC in terms of control performance the
following fit-criterion is applied:

fit = 100 %

(
1− ‖x1,LQR − x1,MPTSC‖

‖x1,LQR − x1,LQR‖

)
. (13)

For the optimization of free parameters a genetic algorithm
is utilized to maximize the fit-criterion for the given step
sequence up to convergence [19]. The elements of the matrix
QM, the scalar penalty rM and the prediction horizon tp are
optimized. Since the control horizon is limited, in particular
nc = 1, tp has a greater influence on the closed loop
performance. Assuming that just the weight qM11

for the state
error in x1 is non-zero, a rather short prediction horizon leads
to a fast dynamic performance since the trajectories cross the
reference xref when the distance between it and the actual
state x1 is already small. The maximum opposite input value
umax or umin is potentially too low to preserve the control
variable from overshooting. A rather long prediction horizon
leads to an over-damped dynamic performance since the
reference is detected earlier by the crossing of trajectories.

B. Simulative Analysis of the MPTSC – Results

In the first scenario the state constraints (5) are omitted.
The model parameters are b0 = 1, a2 = 1.75, a1 = 1.5
and a0 = 1. The parameters of the LQR, the elements of the
diagonal matrix QL and the scalar penalty rL are tuned in the
way that a high control performance is reached. In particular,
control performance is measured in terms of common design
parameters for mechatronic systems like rise time, settle
time and overshoot characteristic. Simultaneously, a violation
of the box constraint on the control variable in (2) with
|uk| ≤ 103 is avoided. As long as no constraints are violated
the LQR leads to an absolute reference for the control
performance for the described setup. It is well-known from
the theory of MPC that even a predictive controller with
control horizon nc = 1 is able to mimic an infinite horizon
(and hence an LQR in the above case) if the state error weight
is chosen according to the algebraic Riccati equation and
some further preliminaries are satisfied [20]. As a reminder,
the MPTSC further discretizes the control input domain.

To evaluate the performance of the MPTSC, the goal is to
reach the optimal reference of the LQR as close as possible.
The control sampling interval ∆Ts is equal to the interval
∆Te = 0.01 s. For the MPTSC the set of discrete control
variables A contains 71 values with ∆u = 2·103/71. Figure 1
indicates the (suboptimal) performance of the MPTSC in
comparison to the optimal LQR. For the given step se-
quence MPTSC can reproduce the LQR performance with
a comparable characteristic with a value of fit = 96.8 %. It
was known in advance that a suboptimal controller cannot
reach the optimal controller performance exactly. However,
it is close to the optimal solution with a set A of just 71
values. A slight oscillation occurs around the steady-state
as a result of the sparse input discretization. This is due to
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Fig. 1: Evaluation of the suboptimal closed loop performance
of the MPTSC. The states x3 and x4 are omitted here.

the fact that the exact required input value for the steady-
state is not in the input set A. This effect is just noticeable
in case of zero model mismatch and can be seen in the
bottom plot. Small deflections around the zero input can be
extracted. With an input set A of just 21 values the LQR
can still be reproduced with a performance of fit = 96.1 %.
However, the amplitude of the oscillation around the steady
state increases slightly. Consequently, the number of values
in set A must be chosen according to the desired application
and available computational resources. For a more detailed
illustration of the functionality of the MPTSC, the set of
predicted trajectories of the first state x1 is shown for
multiple control sampling steps in Figure 2. With respect
to the objective function, a single trajectory is selected by
applying the minimum operator to the candidate set. For the
sake of clearness, the prediction horizon is set longer as it is
required and the set A contains only 11 discrete values. In
the next scenario the box constraints |u| ≤ 103, |x2| ≤ 0.6,
and |x3| ≤ 3 are activated. Figure 3 demonstrates the
capability of the MPTSC to handle box state constraints
for the presented example system. The simulative analysis
indicates promising control performances. In the following
MPTSC is applicated to a real mechatronic system.
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Fig. 2: Predicted trajectories for three control sample steps.
The prediction horizon is set to tp = 0.5 s.
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Fig. 3: Evaluation of the closed loop performance of the
MPTSC with active box constraints. State x4 is omitted here.

III. DIRECTIONAL CONTROL VALVE

In this paper a 4WRPEH6 type valve of Bosch Rexroth
AG is utilized. Figure 4 illustrates a cross section of the
valve. The function of the valve is to route a flow rate
Qv from the pressure port P to the ports A or B since
hydraulic operated actuators may be connected to this ports.
The oil flow is depending on the piston position and the
supply pressure at port P. The feedback control problem of
the valve is the accurate and fast positioning of the pistons
position. The position is measured with an internal inductive
sensor. A position indicated with x1 = ±100 % denotes a
fully opened working port A or B. While one port is set
as active a pressure relief occurs between the other port
and the tank T. The positive movement direction is forced
by the solenoid excited with the current, while the negative
movement direction is forced by the spring. The performance
of this fast acting mechatronic system is characterized by
plenty of nonlinearities like magnetic hysteresis and dynamic
friction. As it was already mentioned a cascaded control
concept is established. The inner controller is a rather simple
current controller with the measurable state i as a fast acting
control variable. The position controller exhibits a high
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controller
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controller

SolenoidMechanics

Hydraulics

u

i

x1
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Controller and

power 

electronics

Solenoid Position  
Hydraulic ports

Spring Piston

sensor

Fig. 4: Cross section of the hydraulic directional control
valve. The block diagram illustrates the mechatronic char-
acter of the valve and the native cascaded control concept.
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number of parameters and thus a high complexity in order
to achieve the requirements for the closed loop performance.
The native control concept is performed with a sampling rate
of fs = 10 kHz. The outer position controller is replaced for
further analyzes with the new MPTSC. Due to the fact that
the rest of the control structure is preserved, the application
effort for realizing this approach is rather low. Since it
is not known in advance for which application the valve
will be used, the goal is to find a robust set of controller
parameters which provides sufficiently high performance for
all operating scenarios. If the pressure and the flow rate
were measurable states, the hydraulic interactions could be
included in the dynamic model to gain higher functionality
and parameters generalization. In this contribution a dynamic
model is identified to map the input of the current controller
u to the output of the position sensor x1. The input is limited
to the value range of U = [−100 %, 100 %] according to (2).

IV. EXPERIMENTAL RESULTS

In section II the structure of the dynamic model for
the directional control valve is already presented. At least
a linear model of third order is required for an accurate
prediction quality. In order to deal with steady-state offsets
mentioned before, a virtual integrator is inserted. Instead of
discretizing the value range of the real control variable the
deviation of this control variable, which is limited to U̇ =
[−3·104 % s−1, 3·104 % s−1], is discretized. The states x1, x2
and x3 are physically interpretable, namely they describe the
position, the velocity and the acceleration of the movable part
of the valve. A Luenberger observer is utilized based on the
identified linear dynamic model. In addition to the measur-
able piston position x1 the current i is also measurable and
is used by the current controller. A prediction of the position
on the basis of the current i needs a nonlinear model so that
this measurable state does not lead to any improvement when
using a linear model. It is obvious that a linear model cannot
be accurate for all operating areas and respects all important
physical properties. To do so, a complex model must be
developed with a high simulation quality [21]. Just regarding
the fact that the considered valve has an asymmetrical force
effect. However, it has its advantages in terms of the real-time
capability and thus allows the functionality of the MPTSC
to be demonstrated in the experiment. The dynamic system
in (7) can be analytically solved for a constant input so
that a numerical integration method is not necessary for the
prediction in every control sampling interval. At runtime the
following algebraic equation has to be solved:

x̂k,l = Φl xk + Γl u, Φl ∈ Rp×p, Γl ∈ Rp×1. (14)

Φl is the well-known transition matrix. The matrices Φl

and Γl can be computed offline for the desired prediction
time steps l. For the realization of the real-time performance
with a control sample rate of fs = 10 kHz the evaluation of
the objective function is carried out for just a few points.
Here, only five values are evaluated for a prediction horizon
of tp = 0.5T with ∆TJM

= 0.1T . It is assumed that the
approximation in (8) is still valid. The variable T indicates

a normalized time. In the context of the optimization of the
native PID control concept of the directional control valve
more than one criterion is considered. The controller param-
eters are optimized to obtain a short rise time, a short settling
time and a small overshoot. The parameters of the MPTSC
are optimized using a multi-criteria evolutionary hardware
in the loop optimization with a dominance-based genetic
algorithm (NSGA-II) [19]. However, the small number and
the mostly intuitive character of the parameters also allow
a manual controller design. The control is performed with a
real-time PC system setup (Matlab / Simulink Real-Time).
Practical investigations have shown that some additional
objective parameters in (8) lead to a higher control perfor-
mance. The first additional parameter ζ explicitly penalizes
the predicted trajectories of the first state x1 whenever they
cross the reference xref . At runtime the matrix QM is then
weighted with ζ. It is similar to a soft constraint since
there is still the possibility that a trajectory is chosen that
crosses the reference xref . It has the advantage that the
overall system performance is not slowed down as it is in the
case of increasing the penalty qM22

for the velocity state x2.
The second additional parameter λ is well-known as the
forgetting factor or decay rate. Since a linear model leads to
a non-neglectable model mismatch, it is reasonable to weight
predicted future distant points in an exponentially descending
manner. For the evaluation of five points on the prediction
horizon the weighting vector has the form

λ = [λ, λ2, λ3, λ4, λ5]ᵀ, λ ≤ 1. (15)

The future distant points can be weighted lighter but they
cannot be omitted since they support the closed loop stability.
Parameters qM11

, qM22
, ζ, λ and tp are optimized. The

remaining parameters are set to zero. After the optimization
a Pareto-optimal individual is chosen manually in depen-
dence on the rise time, settling time and the overshoot
behavior. The model parameters a2, a1, a0 and b0 are
identified for different operating areas. Figure 5 indicates
the closed loop performance of the real valve. Due to
the low required displacement, a model parameter set can
be found which represents both movement directions and
leads to high performance. In contrast to the theoretical
investigations in section II, the real control variable rather
than it’s deviation is shown. Additionally, Figure 5 shows the
observer performance for the states x2 and x3. As the ground
truth an offline zero-phase digital filtering of the measurable
state x1 is performed. The overall observer error is low but
in the steady-state an oscillation due to the required high
observer gain is visible. This fact leads to a recurring slightly
false initialization in every control sampling interval. The
suboptimal characteristic of the MPTSC as a result of the
equidistant discretized input has no noticeable impact on the
real closed loop performance. In this case, other intervening
factors like the model mismatch or the observer error have a
higher impact on the control quality. Figure 6 demonstrates
another experiment which can be executed with a single
linear dynamic model. Both experimental results are in the
performance range of the native valve PID control concept.
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Fig. 5: Experimental closed loop performance results of the
MPTSC for small displacements around the zero position.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the model predictive trajectory set
control. This control concept realizes a rough approximation
of the classic MPC. However, it provides substantially high
control performances in the closed loop, especially with the
application to a directional control valve. Like the classic
MPC it explicitly adheres to state and input constraints. Due
to the sparse discretization of the control input domain, a
gradient-based optimization algorithm is not required. This
fact leads to considerable run-time and realization advan-
tages. This paper demonstrates that the sub-optimal concept
itself performs well and can already be used for the control
task of a fast and nonlinear directional control valve.

Future work is concerned with the improvement of the
dynamic model to predict the future process evolution and
the observer for the hydraulic valve’s states. It is conceivable
to use multiple local linear models for the prediction. An
adaptive discretization of the input at runtime can improve
the control quality and further reduce the computational
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25
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x
1
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[%

]

Fig. 6: Experimental closed loop performance results of the
MPTSC for a high displacement from the zero position.

effort. Furthermore, a theoretical analysis and a wider com-
parison to MPC on different benchmark and mechatronic
systems is of substantial interest.
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